
B15. Théorème de Shannon

• Théorème de Shannon

Un système de TNS fait subir au signal analogique deux opérations :

- un échantillonnage (accompagné éventuellement d'un blocage) de fréquence F_e et de période $T_e = 1/F_e$
- une quantification sur n bits avec une précision $p = \frac{1}{2^n 1}$ (avec n bits on dispose de 2^n valeurs, soit $2^n 1$ intervalles de tension distincts).

Ces deux opérations doivent être cohérentes entre elles : intuitivement, on comprend qu'il est inutile de suréchantillonner un signal quantifié de façon approximative, ou inversement. Considérons un signal triangulaire analogique de période T et d'amplitude A. échantillonné à la fréquence F_e et quantifié sur n bits.

Le signal analogique varie à raison de A volts par demi-période, soit une pente ou vitesse d'évolution égale à $\frac{A}{T/2}$ V.s⁻¹. Il est numérisé avec une précision p, soit une résolution a = p.A. La

vitesse d'évolution du signal numérique est donc $\frac{a}{T_e}$ V.s⁻¹.

Le signal numérique "suivra" les évolutions du signal analogique si ces deux vitesses sont égales. Il faut donc que :

$$\frac{A}{\frac{T}{2}} = \frac{a}{T_e} \Rightarrow p = \frac{a}{A} = \frac{2T_e}{T}$$

Le nombre minimum de bits est évidemment n=1, ce qui correspond à une quantification "tout ou rien" où a=A (sur la figure, seuls subsisteraient les deux points situés en haut et en bas du signal). Alors :

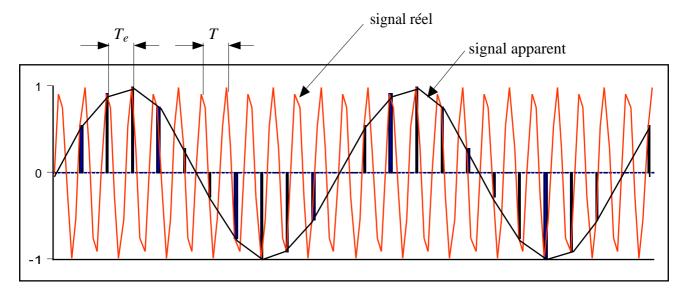
$$n \ge 1 \Rightarrow p \le 1 \Rightarrow T \ge 2 T_e$$
 ou encore : $F \le 2 F_e$

Théorème de Shannon : la fréquence d'échantillonnage doit être au moins égale au double de la fréquence du signal analogique.

En deçà de cette limite *théorique*, il n'est pas possible de reconstituer un signal à partir de ses échantillons. Dans la pratique, on choisit :

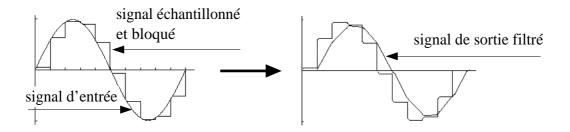
- en instrumentation : $n \ge 4$, soit $p \le 1/15$, donc $F \le F_e/30$.

- en audio : pour $F \le 20 \text{ kHz}$ (son Hi-Fi), $F_e = 44,1 \text{ kHz}$
- en téléphonie : pour $F \le 3400 \text{ Hz}$ (voix humaine), $F_e = 8 \text{ kHz}$.


• Filtre anti-repliement (anti-aliasing)

Il est inutile et même nuisible d'imposer à un système de TNS des signaux dont les variations seraient plus rapides que ce qu'il est capable de traiter à la fréquence F_e .

Dans le cas contraire, on constate expérimentalement la présence d'un effet "stroboscopique" : au signal de fréquence trop élevée se substitue un signal de fréquence *apparente* plus basse. Tout se passe comme si les fréquences hautes étaient "repliées" dans la partie du spectre inférieure à F_e /2 (voir chap B34).


On fait donc précéder le système d'un filtre passe-bas "anti-repliement" éliminant les signaux de fréquence supérieure à F_e /2.

Exemple: on choisit ici $T_e = 1,1 T$:

• Filtre de lissage

Pour reconstruire le signal analogique d'origine à partir du signal échantillonné, un filtre passe-bas est nécessaire. Sa fréquence de coupure est choisie égale ou inférieure à $F_e/2$.

