OneStopGate.Com
OnestopGate   OnestopGate
   Friday, November 22, 2024 Login  
OnestopGate
Home | Overview | Syllabus | Tutorials | FAQs | Downloads | Recommended Websites | Advertise | Payments | Contact Us | Forum
OneStopGate

GATE Resources
Gate Articles
Gate Books
Gate Colleges 
Gate Downloads 
Gate Faqs
Gate Jobs
Gate News 
Gate Sample Papers
Training Institutes

GATE Overview
Overview
GATE Eligibility
Structure Of GATE
GATE Coaching Centers
Colleges Providing M.Tech/M.E.
GATE Score
GATE Results
PG with Scholarships
Article On GATE
Admission Process For M.Tech/ MCP-PhD
GATE Topper 2012-13
GATE Forum




GATE 2025 Exclusive
Organizing Institute
Important Dates
How to Apply
Discipline Codes
GATE 2025 Exam Structure

GATE 2025 Syllabus
Aerospace Engg..
Agricultural Engg..
Architecture and Planning
Chemical Engg..
Chemistry
Civil Engg..
Computer Science / IT
Electronics & Communication Engg..
Electrical Engg..
Engineering Sciences
Geology and Geophysics
Instrumentation Engineering
Life Sciences
Mathematics
Mechanical Engg..
Metallurgical Engg..
Mining Engg..
Physics
Production & Industrial Engg..
Pharmaceutical Sciences
Textile Engineering and Fibre Science

GATE Study Material
Aerospace Engg..
Agricultural Engg..
Chemical Engg..
Chemistry
Civil Engg..
Computer Science / IT
Electronics & Communication Engg..
Electrical Engg..
Engineering Sciences
Instrumentation Engg..
Life Sciences
Mathematics
Mechanical Engg..
Physics
Pharmaceutical Sciences
Textile Engineering  and Fibre Science

GATE Preparation
GATE Pattern
GATE Tips N Tricks
Compare Evaluation
Sample Papers 
Gate Downloads 
Experts View

CEED 2013
CEED Exams
Eligibility
Application Forms
Important Dates
Contact Address
Examination Centres
CEED Sample Papers

Discuss GATE
GATE Forum
Exam Cities
Contact Details
Bank Details

Miscellaneous
Advertisment
Contact Us


Home » Gate Articles » Probability Distribution

Probability Distribution


Looking for GATE Preparation Material? Join & Get here now!

** Gate 2013 Question Papers.. ** CEED 2013 Results.. ** Gate 2013 Question Papers With Solutions.. ** GATE 2013 CUT-OFFs.. ** GATE 2013 Results.. **

In probability theory and statistics, a probability distribution identifies either the probability of each value of an unidentified random variable (when the variable is discrete), or the probability of the value falling within a particular interval (when the variable is continuous).[1] The probability distribution describes the range of possible values that a random variable can attain and the probability that the value of the random variable is within any (measurable) subset of that range.


The Normal distribution, often called the "bell curve"When the random variable takes values in the set of real numbers, the probability distribution is completely described by the cumulative distribution function, whose value at each real x is the probability that the random variable is smaller than or equal to x.

The concept of the probability distribution and the random variables which they describe underlies the mathematical discipline of probability theory, and the science of statistics. There is spread or variability in almost any value that can be measured in a population (e.g. height of people, durability of a metal, etc.); almost all measurements are made with some intrinsic error; in physics many processes are described probabilistically, from the kinetic properties of gases to the quantum mechanical description of fundamental particles. For these and many other reasons, simple numbers are often inadequate for describing a quantity, while probability distributions are often more appropriate.

There are various probability distributions that show up in various different applications. One of the more important ones is the normal distribution, which is also known as the Gaussian distribution or the bell curve and approximates many different naturally occurring distributions. The toss of a fair coin yields another familiar distribution, where the possible values are heads or tails, each with probability 1/2.

Formal definition
In the measure-theoretic formalization of probability theory, a random variable is defined as a measurable function X from a probability space to its observation space . A probability distribution is the pushforward measure X*P = PX −1 on .

In other words, a probability distribution is a probability measure over the observation space instead of the underlying probability space.


Probability distributions of real-valued random variables
Because a probability distribution Pr on the real line is determined by the probability of a real-valued random variable X being in a half-open interval (-∞, x], the probability distribution is completely characterized by its cumulative distribution function:


Discrete probability distribution:
A probability distribution is called discrete if its cumulative distribution function only increases in jumps. More precisely, a probability distribution is discrete if there is a finite or countable set whose probability is 1.

For many familiar discrete distributions, the set of possible values is topologically discrete in the sense that all its points are isolated points. But, there are discrete distributions for which this countable set is dense on the real line.

Discrete distributions are characterized by a probability mass function, p such that


Continuous probability distribution:
By one convention, a probability distribution is called continuous if its cumulative distribution function is continuous, which means that it belongs to a random variable X for which Pr[ X = x ] = 0 for all x in R.

Another convention reserves the term continuous probability distribution for absolutely continuous distributions. These distributions can be characterized by a probability density function: a non-negative Lebesgue integrable function f defined on the real numbers such that


Discrete distributions and some continuous distributions (like the devil's staircase) do not admit such a density.


Terminology:
The support of a distribution is the smallest closed interval/set whose complement has probability zero. It may be understood as the points or elements that are actual members of the distribution.

A discrete random variable is a random variable whose probability distribution is discrete. Similarly, a continuous random variable is a random variable whose probability distribution is continuous.


Simulated sampling:
If one is programming and one wishes to sample from a probability distribution (either discrete or continuous), the following algorithm lets one do so. This algorithm assumes that one has access to the inverse of the cumulative distribution (easy to calculate with a discrete distribution, can be approximated for continuous distributions) and a computational primitive called "random()" which returns an arbitrary-precision floating-point-value in the range of [0,1).

define function sampleFrom(cdfInverse (type="function")):
// input:
// cdfInverse(x) - the inverse of the CDF of the probability distribution
// example: if distribution is [[Gaussian]], one can use a [[Taylor approximation]] of the inverse of [[erf]](x)
// example: if distribution is discrete, see explanation below pseudocode
// output:
// type="real number" - a value sampled from the probability distribution represented by cdfInverse

r = random()

while(r == 0): (make sure r is not equal to 0; discontinuity possible)
r = random()

return cdfInverse(r)
For discrete distributions, the function cdfInverse (inverse of cumulative distribution function) can be calculated from samples as follows: for each element in the sample range (discrete values along the x-axis), calculating the total samples before it. Normalize this new discrete distribution. This new discrete distribution is the CDF, and can be turned into an object which acts like a function: calling cdfInverse(query) returns the greatest x-value such that the CDF is less than the query.

define function dataToCdfInverse(discreteDistribution (type="dictionary"))
// input:
// discreteDistribution - a mapping from possible values to frequencies/probabilities
// example: {0 -> 1-p, 1 -> p} would be a [[Bernoulli distribution]] with chance=p
// example: setting p=0.5 in the above example, this is a [[fair coin]] where P(X=1)->"heads" and P(X=0)->"tails"
// output:
// type="function" - a function that represents (CDF^-1)(x)

define function cdfInverse(x):
integral = 0
go through mapping (key->value) in sorted order, adding value to integral...
stop when integral > x (or integral >= x, doesn't matter)
return last key we added

return cdfInverse
Note that often, mathematics environments and computer algebra systems will have some way to represent probability distributions and sample from them. This functionality might even have been developed in third-party libraries. Such packages greatly facilitate such sampling, most likely have optimizations for common distributions, and are likely to be more elegant than the above bare-bones solution.


Some properties:
The probability density function of the sum of two independent random variables is the convolution of each of their density functions.
The probability density function of the difference of two independent random variables is the cross-correlation of their density functions.
Probability distributions are not a vector space - they are not closed under linear combinations, as these do not preserve non-negativity or total integral 1 - but they are closed under convex combination, thus forming a convex subset of the space of functions (or measures).



More Gate Articles
 



Discussion Center

Discuss/
Query

Papers/
Syllabus

Feedback/
Suggestion

Yahoo
Groups

Sirfdosti
Groups

Contact
Us

MEMBERS LOGIN
  
Email ID:
Password:

  Forgot Password?
 New User? Register!

INTERVIEW EBOOK
Get 9,000+ Interview Questions & Answers in an eBook. Interview Question & Answer Guide
  • 9,000+ Interview Questions
  • All Questions Answered
  • 5 FREE Bonuses
  • Free Upgrades
GATE RESOURCES
 
  • Gate Books
  • Training Institutes
  • Gate FAQs
  • GATE BOOKS
     
  • Mechanical Engineeering Books
  • Robotics Automations Engineering Books
  • Civil Engineering Books
  • Chemical Engineering Books
  • Environmental Engineering Books
  • Electrical Engineering Books
  • Electronics Engineering Books
  • Information Technology Books
  • Software Engineering Books
  • GATE Preparation Books
  • Exciting Offers



    GATE Exam, Gate 2009, Gate Papers, Gate Preparation & Related Pages


    GATE Overview | GATE Eligibility | Structure Of GATE | GATE Training Institutes | Colleges Providing M.Tech/M.E. | GATE Score | GATE Results | PG with Scholarships | Article On GATE | GATE Forum | GATE 2009 Exclusive | GATE 2009 Syllabus | GATE Organizing Institute | Important Dates for GATE Exam | How to Apply for GATE | Discipline / Branch Codes | GATE Syllabus for Aerospace Engineering | GATE Syllabus for Agricultural Engineering | GATE Syllabus for Architecture and Planning | GATE Syllabus for Chemical Engineering | GATE Syllabus for Chemistry | GATE Syllabus for Civil Engineering | GATE Syllabus for Computer Science / IT | GATE Syllabus for Electronics and Communication Engineering | GATE Syllabus for Engineering Sciences | GATE Syllabus for Geology and Geophysics | GATE Syllabus for Instrumentation Engineering | GATE Syllabus for Life Sciences | GATE Syllabus for Mathematics | GATE Syllabus for Mechanical Engineering | GATE Syllabus for Metallurgical Engineering | GATE Syllabus for Mining Engineering | GATE Syllabus for Physics | GATE Syllabus for Production and Industrial Engineering | GATE Syllabus for Pharmaceutical Sciences | GATE Syllabus for Textile Engineering and Fibre Science | GATE Preparation | GATE Pattern | GATE Tips & Tricks | GATE Compare Evaluation | GATE Sample Papers | GATE Downloads | Experts View on GATE | CEED 2009 | CEED 2009 Exam | Eligibility for CEED Exam | Application forms of CEED Exam | Important Dates of CEED Exam | Contact Address for CEED Exam | CEED Examination Centres | CEED Sample Papers | Discuss GATE | GATE Forum of OneStopGATE.com | GATE Exam Cities | Contact Details for GATE | Bank Details for GATE | GATE Miscellaneous Info | GATE FAQs | Advertisement on GATE | Contact Us on OneStopGATE |
    Copyright © 2024. One Stop Gate.com. All rights reserved Testimonials |Link To Us |Sitemap |Privacy Policy | Terms and Conditions|About Us
    Our Portals : Academic Tutorials | Best eBooksworld | Beyond Stats | City Details | Interview Questions | India Job Forum | Excellent Mobiles | Free Bangalore | Give Me The Code | Gog Logo | Free Classifieds | Jobs Assist | Interview Questions | One Stop FAQs | One Stop GATE | One Stop GRE | One Stop IAS | One Stop MBA | One Stop SAP | One Stop Testing | Web Hosting | Quick Site Kit | Sirf Dosti | Source Codes World | Tasty Food | Tech Archive | Software Testing Interview Questions | Free Online Exams | The Galz | Top Masala | Vyom | Vyom eBooks | Vyom International | Vyom Links | Vyoms | Vyom World
    C Interview Questions | C++ Interview Questions | Send Free SMS | Placement Papers | SMS Jokes | Cool Forwards | Romantic Shayari