The Transmission Control Protocol (TCP) is one of the core protocols of the Internet Protocol Suite. TCP is one of the two original components of the suite (the other being Internet Protocol, or IP), so the entire suite is commonly referred to as TCP/IP. Whereas IP handles lower-level transmissions from computer to computer as a message makes its way across the Internet, TCP operates at a higher level, concerned only with the two end systems, for example a Web browser and a Web server. In particular, TCP provides reliable, ordered delivery of a stream of bytes from a program on one computer to another program on another computer. Besides the Web, other common applications of TCP include e-mail and file transfer. Among its other management tasks, TCP controls segment size, the rate at which data is exchanged, and network traffic congestion.
Network function: TCP provides a communication service at an intermediate level between an application program and the Internet Protocol (IP). That is, when an application program desires to send a large chunk of data across the Internet using IP, instead of breaking the data into IP-sized pieces and issuing a series of IP requests, the software can issue a single request to TCP and let TCP handle the IP details.
IP works by exchanging pieces of information called packets. A packet is a sequence of bytes and consists of a header followed by a body. The header describes the packet's destination and, optionally, the routers to use for forwarding until it arrives at its final destination. The body contains the data which IP is transmitting.
Due to network congestion, traffic load balancing, or other unpredictable network behavior, IP packets can be lost or delivered out of order. TCP detects these problems, requests retransmission of lost packets, rearranges out-of-order packets, and even helps minimize network congestion to reduce the occurrence of the other problems. Once the TCP receiver has finally reassembled a perfect copy of the data originally transmitted, it passes that datagram to the application program. Thus, TCP abstracts the application's communication from the underlying networking details.
TCP is used extensively by many of the Internet's most popular applications, including the World Wide Web, E-mail, File Transfer Protocol, Secure Shell, and some streaming media applications.
TCP is optimized for accurate delivery rather than timely delivery, and therefore, TCP sometimes incurs relatively long delays (in the order of seconds) while waiting for out-of-order messages or retransmissions of lost messages. It is not particularly suitable for real-time applications such as Voice over IP. For such applications, protocols like the Real-time Transport Protocol (RTP) running over the User Datagram Protocol (UDP) are usually recommended instead.[2]
TCP is a reliable stream delivery service that guarantees delivery of a data stream sent from one host to another without duplication or losing data. Since packet transfer is not reliable, a technique known as positive acknowledgment with retransmission is used to guarantee reliability of packet transfers. This fundamental technique requires the receiver to respond with an acknowledgment message as it receives the data. The sender keeps a record of each packet it sends, and waits for acknowledgment before sending the next packet. The sender also keeps a timer from when the packet was sent, and retransmits a packet if the timer expires. The timer is needed in case a packet gets lost or corrupted.[2]
TCP consists of a set of rules: for the protocol, that are used with the Internet Protocol, and for the IP, to send data "in a form of message units" between computers over the Internet. At the same time that IP takes care of handling the actual delivery of the data, TCP takes care of keeping track of the individual units of data transmission, called segments, that a message is divided into for efficient routing through the network. For example, when an HTML file is sent from a Web server, the TCP software layer of that server divides the sequence of bytes of the file into segments and forwards them individually to the IP software layer (Internet Layer). The Internet Layer encapsulates each TCP segment into an IP packet by adding a header which includes (among other data) the destination IP address. Even though every packet has the same destination address, they can be routed on different paths through the network. When the client program on the destination computer receives them, the TCP layer (Transport Layer) reassembles the individual segments and ensures they are correctly ordered and errorfree as it streams them to an application.
|