OneStopGate.Com
OnestopGate   OnestopGate
   Tuesday, November 19, 2024 Login  
OnestopGate
Home | Overview | Syllabus | Tutorials | FAQs | Downloads | Recommended Websites | Advertise | Payments | Contact Us | Forum
OneStopGate

GATE Resources
Gate Articles
Gate Books
Gate Colleges 
Gate Downloads 
Gate Faqs
Gate Jobs
Gate News 
Gate Sample Papers
Training Institutes

GATE Overview
Overview
GATE Eligibility
Structure Of GATE
GATE Coaching Centers
Colleges Providing M.Tech/M.E.
GATE Score
GATE Results
PG with Scholarships
Article On GATE
Admission Process For M.Tech/ MCP-PhD
GATE Topper 2012-13
GATE Forum




GATE 2025 Exclusive
Organizing Institute
Important Dates
How to Apply
Discipline Codes
GATE 2025 Exam Structure

GATE 2025 Syllabus
Aerospace Engg..
Agricultural Engg..
Architecture and Planning
Chemical Engg..
Chemistry
Civil Engg..
Computer Science / IT
Electronics & Communication Engg..
Electrical Engg..
Engineering Sciences
Geology and Geophysics
Instrumentation Engineering
Life Sciences
Mathematics
Mechanical Engg..
Metallurgical Engg..
Mining Engg..
Physics
Production & Industrial Engg..
Pharmaceutical Sciences
Textile Engineering and Fibre Science

GATE Study Material
Aerospace Engg..
Agricultural Engg..
Chemical Engg..
Chemistry
Civil Engg..
Computer Science / IT
Electronics & Communication Engg..
Electrical Engg..
Engineering Sciences
Instrumentation Engg..
Life Sciences
Mathematics
Mechanical Engg..
Physics
Pharmaceutical Sciences
Textile Engineering  and Fibre Science

GATE Preparation
GATE Pattern
GATE Tips N Tricks
Compare Evaluation
Sample Papers 
Gate Downloads 
Experts View

CEED 2013
CEED Exams
Eligibility
Application Forms
Important Dates
Contact Address
Examination Centres
CEED Sample Papers

Discuss GATE
GATE Forum
Exam Cities
Contact Details
Bank Details

Miscellaneous
Advertisment
Contact Us


Home » GATE Study Material » Chemical Engineering » Chemical Process » About Temperature


About Temperature


Looking for GATE Preparation Material? Join & Get here now!

** Gate 2013 Question Papers.. ** CEED 2013 Results.. ** Gate 2013 Question Papers With Solutions.. ** GATE 2013 CUT-OFFs.. ** GATE 2013 Results.. **

<<Previous Next>>
About Temperature

The Kinetic Theory


This brief summary is abridged from a more detailed discussion to be found in Quinn's "Temperature"

About the same time that thermodynamics was evolving, James Clerk Maxwell (1831-1879) and Ludwig Boltzmann (1844-1906) developed a theory describing the way molecules moved - molecular dynamics. The molecules that make up a perfect gas move about, colliding with each other like billiard balls and bouncing off the surface of the container holding the gas. The energy associated with motion is called Kinetic Energy and this kinetic approach to the behavior of ideal gases led to an interpretation of the concept of temperature on a microscopic scale.

The amount of kinetic energy each molecule has is a function of its velocity; for the large number of molecules in a gas (even at low pressure), there should be a range of velocities at any instant of time. The magnitude of the velocities of the various particles should vary greatly - no two particles should be expected to have the exact same velocity. Some may be moving very fast; others, quite slowly. Maxwell found that he could represent the distribution of velocities statistically by a function known as the Maxwellian distribution. The collisions of the molecules with their container gives rise to the pressure of the gas. By considering the average force exerted by the molecular collisions on the wall, Boltzmann was able to show that the average kinetic energy of the molecules was directly comparable to the measured pressure, and the greater the average kinetic energy, the greater the pressure. From Boyles' Law, we know that the pressure is directly proportional to the temperature, therefore, it was shown that the kinetic energy of the molecules related directly to the temperature of the gas. A simple relation holds for this:

average kinetic energy of molecules=3kT/2,

where k is the Boltzmann constant. Temperature is a measure of the energy of thermal motion and, at a temperature of zero, the energy reaches a minimum (quantum mechanically, the zero-point motion remains at 0 K).

In July, 1995, physicists in Boulder, Colo.achieved a temperature far lower than has ever been produced before and created an entirely new state of matter predicted decades ago by Albert Einstein and Satyendra Nath Bose. The press release describes the nature of this experiment and a full description of this phenomenon is described by the University of Colorado's BEC Homepage.

Dealing with a system which contained huge numbers of molecules requires a statistical approach to the problem. About 1902, J. W. Gibbs (1839-1903) introduced statistical mechanics with which he demonstrated how average values of the properties of a system could be predicted from an analysis of the most probable values of these properties found from a large number of identical systems (called an ensemble). Again, in the statistical mechanical interpretation of thermodynamics, the key parameter is identified with a temperature which can be directly linked to the thermodynamic temperature, with the temperature of Maxwell's distribution, and with the perfect gas law.

Temperature becomes a quantity definable either in terms of macroscopic thermodynamic quantities such as heat and work, or, with equal validity and identical results, in terms of a quantity which characterized the energy distribution among the particles in a system. (Quinn, "Temperature")
With this understanding of the concept of temperature, it is possible to explain how heat (thermal energy) flows from one body to another. Thermal energy is carried by the molecules in the form of their motions and some of it, through molecular collisions, is transferred to molecules of a second object when put in contact with it. This mechanism for transferring thermal energy by contact is called conduction.

A second mechanism of heat transport is illustrated by a pot of water set to boil on a stove - hotter water closest to the flame will rise to mix with cooler water near the top of the pot. Convection involves the bodily movement of the more energetic molecules in a liquid or gas.

The third way that heat energy can be transferred from one body to another is by radiation; this is the way that the sun warms the earth. The radiation flows from the sun to the earth, where some of it is absorbed, heating the surface.

A major dilemma in physics since the time of Newton was how to explain the nature of this radiation.

Thermal Radiation


The nature of radiation has puzzled scientists for centuries. Maxwell proposed that this form of energy travels as a vibratory electric and magnetic disturbance through space in a direction perpendicular to those disturbances.

In the diagram, the electric (red) and magnetic (blue) oscillations are orthogonal to each other - the electric lying in the xy plane; the magnetic, in the xz plane. The wave is traveling in the x direction. An electromagnetic wave can be defined in terms of the frequency of its oscillation, designated by the Greek letter nu (v). The wave moves in a straight line with with a constant speed (designated as c if it is moving through a vacuum); the distance between successive 'peaks' of the wave is the wavelength,,of the wave and is equal to its speed divided by its frequency.

The electromagnetic spectrum covers an enormous range in wavelengths, from very short waves to very long ones.

The only region of the electromagnetic spectrum to which our eye is sensitive is the "visible" range identified in the diagram by the rainbow colors.

The sun is not the only object that provides radiant energy; any object whose temperature is greater than 0 K will emit some radiant energy. The challenge to scientists was to show how this radiant energy is related to the temperature of the object.

If an object is placed in a container whose walls are at a uniform temperature, we expect the object to come into thermal equilibrium with the walls of the enclosure and the object should emit radiant energy just like the walls of the container. Such an object absorbs and radiates the same amount of energy. Now a blackened surface absorbs all radiation incident upon it and it must radiate in the same manner if it is in thermal equilibrium. Equilibrium thermal radiation is therefore called black body radiation.

The first relation between temperature and radiant energy was deduced by J. Stefan in 1884 and theoretically explained by Boltzmann about the same time. It states:

where the total energy is per unit area per second emitted by the back body, T is its absolute (thermodynamic) temperature and is the Stefan-Boltzmann constant.

The great question at the turn of the century was to explain the way this total radiant energy emitted by a black body was spread out into the various frequencies or wavelengths of the radiation. Maxwell's "classical" theory of electromagnetic oscillators failed to explain the observed brightness distribution. It was left to Max Planck to solve the dilemma by showing that the energy of the oscillators must be quantized, i.e. the energies can not take any value but must change in steps, the size of each step, or quantum, is proportional to the frequency of the oscillator and equal to hv, where h is the Planck constant. With this assumption, Planck derived the brightness distribution of a black body and showed that it is defined by its temperature. Once the temperature of a black body is specified, the Planck law can be used to calculate the intensity of the light emitted by the body as a function of wavelength. Conversely, if the brightness distribution of a radiating body is measured, then, by fitting a Planck curve to it, its temperature can be determined.

The curves illustrated below show that the hotter the body is, the brighter it is at shorter wavelengths. The surface temperature of the sun is 6000 K, and its Planck curve peaks in the visible wavelength range. For bodies cooler than the sun, the peak of the Planck curve shifts to longer wavelengths, until a temperature is reached such that very little radiant energy is emitted in the visible range.

This figure (adapted from Adkins' "Thermal Physics") shows several Planck curves for black bodies. The Intensity is in units of energy per unit area per unit solid angle per unit time per unit wavelength interval. The broken line illustrates the variation with wavelength and temperature of the peaks of the curves.

This is a graphical representation of Wien's law, which states:

(max) ~ 0.29/T,

where (max) is the wavelength of maximum brightness in cm and T is the absolute temperature of the black body.

The human body has a temperature of about 310 K and radiates primarily in the far infrared. If a photograph of a human is taken with a camera sensitive to this wavelength region, we get a "thermal" picture. This picture is courtesy of the Infrared Processing and Analysis Center, Jet Propulsion Laboratory, NASA.

A page developed by

<<Previous Next>>



Discussion Center

Discuss/
Query

Papers/
Syllabus

Feedback/
Suggestion

Yahoo
Groups

Sirfdosti
Groups

Contact
Us

MEMBERS LOGIN
  
Email ID:
Password:

  Forgot Password?
 New User? Register!

INTERVIEW EBOOK
Get 9,000+ Interview Questions & Answers in an eBook. Interview Question & Answer Guide
  • 9,000+ Interview Questions
  • All Questions Answered
  • 5 FREE Bonuses
  • Free Upgrades
GATE RESOURCES
 
  • Gate Books
  • Training Institutes
  • Gate FAQs
  • GATE BOOKS
     
  • Mechanical Engineeering Books
  • Robotics Automations Engineering Books
  • Civil Engineering Books
  • Chemical Engineering Books
  • Environmental Engineering Books
  • Electrical Engineering Books
  • Electronics Engineering Books
  • Information Technology Books
  • Software Engineering Books
  • GATE Preparation Books
  • Exciting Offers



    GATE Exam, Gate 2009, Gate Papers, Gate Preparation & Related Pages


    GATE Overview | GATE Eligibility | Structure Of GATE | GATE Training Institutes | Colleges Providing M.Tech/M.E. | GATE Score | GATE Results | PG with Scholarships | Article On GATE | GATE Forum | GATE 2009 Exclusive | GATE 2009 Syllabus | GATE Organizing Institute | Important Dates for GATE Exam | How to Apply for GATE | Discipline / Branch Codes | GATE Syllabus for Aerospace Engineering | GATE Syllabus for Agricultural Engineering | GATE Syllabus for Architecture and Planning | GATE Syllabus for Chemical Engineering | GATE Syllabus for Chemistry | GATE Syllabus for Civil Engineering | GATE Syllabus for Computer Science / IT | GATE Syllabus for Electronics and Communication Engineering | GATE Syllabus for Engineering Sciences | GATE Syllabus for Geology and Geophysics | GATE Syllabus for Instrumentation Engineering | GATE Syllabus for Life Sciences | GATE Syllabus for Mathematics | GATE Syllabus for Mechanical Engineering | GATE Syllabus for Metallurgical Engineering | GATE Syllabus for Mining Engineering | GATE Syllabus for Physics | GATE Syllabus for Production and Industrial Engineering | GATE Syllabus for Pharmaceutical Sciences | GATE Syllabus for Textile Engineering and Fibre Science | GATE Preparation | GATE Pattern | GATE Tips & Tricks | GATE Compare Evaluation | GATE Sample Papers | GATE Downloads | Experts View on GATE | CEED 2009 | CEED 2009 Exam | Eligibility for CEED Exam | Application forms of CEED Exam | Important Dates of CEED Exam | Contact Address for CEED Exam | CEED Examination Centres | CEED Sample Papers | Discuss GATE | GATE Forum of OneStopGATE.com | GATE Exam Cities | Contact Details for GATE | Bank Details for GATE | GATE Miscellaneous Info | GATE FAQs | Advertisement on GATE | Contact Us on OneStopGATE |
    Copyright © 2024. One Stop Gate.com. All rights reserved Testimonials |Link To Us |Sitemap |Privacy Policy | Terms and Conditions|About Us
    Our Portals : Academic Tutorials | Best eBooksworld | Beyond Stats | City Details | Interview Questions | India Job Forum | Excellent Mobiles | Free Bangalore | Give Me The Code | Gog Logo | Free Classifieds | Jobs Assist | Interview Questions | One Stop FAQs | One Stop GATE | One Stop GRE | One Stop IAS | One Stop MBA | One Stop SAP | One Stop Testing | Web Hosting | Quick Site Kit | Sirf Dosti | Source Codes World | Tasty Food | Tech Archive | Software Testing Interview Questions | Free Online Exams | The Galz | Top Masala | Vyom | Vyom eBooks | Vyom International | Vyom Links | Vyoms | Vyom World
    C Interview Questions | C++ Interview Questions | Send Free SMS | Placement Papers | SMS Jokes | Cool Forwards | Romantic Shayari