OneStopGate.Com
OnestopGate   OnestopGate
   Tuesday, November 19, 2024 Login  
OnestopGate
Home | Overview | Syllabus | Tutorials | FAQs | Downloads | Recommended Websites | Advertise | Payments | Contact Us | Forum
OneStopGate

GATE Resources
Gate Articles
Gate Books
Gate Colleges 
Gate Downloads 
Gate Faqs
Gate Jobs
Gate News 
Gate Sample Papers
Training Institutes

GATE Overview
Overview
GATE Eligibility
Structure Of GATE
GATE Coaching Centers
Colleges Providing M.Tech/M.E.
GATE Score
GATE Results
PG with Scholarships
Article On GATE
Admission Process For M.Tech/ MCP-PhD
GATE Topper 2012-13
GATE Forum




GATE 2025 Exclusive
Organizing Institute
Important Dates
How to Apply
Discipline Codes
GATE 2025 Exam Structure

GATE 2025 Syllabus
Aerospace Engg..
Agricultural Engg..
Architecture and Planning
Chemical Engg..
Chemistry
Civil Engg..
Computer Science / IT
Electronics & Communication Engg..
Electrical Engg..
Engineering Sciences
Geology and Geophysics
Instrumentation Engineering
Life Sciences
Mathematics
Mechanical Engg..
Metallurgical Engg..
Mining Engg..
Physics
Production & Industrial Engg..
Pharmaceutical Sciences
Textile Engineering and Fibre Science

GATE Study Material
Aerospace Engg..
Agricultural Engg..
Chemical Engg..
Chemistry
Civil Engg..
Computer Science / IT
Electronics & Communication Engg..
Electrical Engg..
Engineering Sciences
Instrumentation Engg..
Life Sciences
Mathematics
Mechanical Engg..
Physics
Pharmaceutical Sciences
Textile Engineering  and Fibre Science

GATE Preparation
GATE Pattern
GATE Tips N Tricks
Compare Evaluation
Sample Papers 
Gate Downloads 
Experts View

CEED 2013
CEED Exams
Eligibility
Application Forms
Important Dates
Contact Address
Examination Centres
CEED Sample Papers

Discuss GATE
GATE Forum
Exam Cities
Contact Details
Bank Details

Miscellaneous
Advertisment
Contact Us


Home » GATE Study Material » Electrical Engineering » Basic Concepts » Measuring Voltage

Basic Concepts

Looking for GATE Preparation Material? Join & Get here now!

** Gate 2013 Question Papers.. ** CEED 2013 Results.. ** Gate 2013 Question Papers With Solutions.. ** GATE 2013 CUT-OFFs.. ** GATE 2013 Results.. **

Next>>
Measuring Voltage

Measuring Voltage

Why Measure Voltage?

  • If you are an Electrical Engineering student:
    • Voltage is a fundamental quantity that is important in every phase of electrical engineering from power systems to voltages inside VLSI chips.
  • If you are an Mechanical Engineering student:
    • You will want to measure things like temperature.  If you do that, you will use some sort of temperature sensor, and the odds are high that it will produce a voltage that you have to measure.
  • If you are a Chemical Engineering student:
    • You will want to measure things like pH.  If you do that, you will use some sort of pHsensor, and the odds are high that it will produce a voltage that you have to measure.
  • If you are a Civil Engineering student:
    • You will want to measure things like strain.  If you do that, you will use a strain gage in an electrical circuit, and you will need to know how to measure voltage, and quite possibly you will need to know how to set up the circuit.
  • If you are a Bioengineering student:
    • You may want to measure voltages produced by nerve cells.
        Whatever your engineering persuasion, you will need to make measurements that will invariably require you to deal with a voltage from a sensor.  You might not need to be the world's greatest expert on how to measure voltage, but you will need to be knowledgable even if you just want to talk to the person who designs the measurement system. 

        That leads us to the question of what you should know at the end of this lesson.  Consider the following:

  • Given a need for a physical measurement:
    • Be able to select and use basic sensors to measure temperature, strain, etc.
  • Given a voltage output from a sensor:
      To be able to connect a voltmeter - or other voltage measurement instrument - to the circuit at proper points,
    • Be able to use a voltmeter, oscilloscope or A/D card to measure the voltage
Eventually, you will also want to do the following - even though it is not explicitly covered in this lesson.
  • Given a voltage measurement problem:
    • Be able to record voltage measurements in a computer file, and,
    • Be able to use that file in an analysis program, including Mathcad, Matlab or Excel.
        The conclusion that you have to come to is that everyone who makes measurements - of almost any physical variable - is going to deal with voltages, voltage measurements and digital representations of voltages, whether they are a biologist, a mechanical engineer, an automobile mechanic or any number of other occupations.  Voltage is ubiquitous, and you have to deal with it - whether you want to or not.  You may not want to be an electrical enginer, but you will probably need to understand enough about basic electrical measurements to be able to use modern sensors, instruments and analysis programs in your work.

 



Using a Voltmeter

        In this section we'll look at how you use a voltmeter.  Here's a representation of a voltmeter.

For our introduction to the voltmeter, we need to be aware of three items on the voltmeter.

  • The display.  This is where the result of the measurement is displayed.  You meter might be either analog or digital.  If it's analog you need to read a reading off a scale.  If it's digital, it will usually have an LED or LCD display panel where you can see what the voltage measurement is.
  • The positive input terminal, and it's almost always red.
  • The negative input terminal, and it's almost always black.
        Next, you need to be aware of what the voltmeter measures.  Here it is in a nutshell.
  • A voltmeter measures the voltage difference between the positive input terminal of the voltmeter and the negative input terminal.
        That's it.  That's what it measures.  Nothing more, nothing less - just that voltage difference.  That means you can measure voltage differences in a circuit by connecting the positive input terminal and the negative input terminal to locations in a circuit.

        We'll show a voltmeter connected to the circuit diagram - a mixed metaphor approach.  Forgive us for that, but let's look at it.

This figure shows where you would place the leads if you wanted to measure the voltage across element #4.

  • Notice that the voltmeter measures the voltage across element #4, +V4.
  • Notice the polarity definitions for V4, and notice how the red terminal is connected to the "+" end of element #4.  If you reversed the leads, by connecting the red lead to the "-" terminal on element #4 and the black lead to the "+" end of element #4, you would be measuring -V4.
        There are some important things to note about taking a voltage measurement.  The most important point is this.
  • Voltage is an across variable.
    • That means that when you measure voltage you measure a difference between two points in space.
    • There are other variables of this type.  For example, if you use a pressure sensor, you measure the pressure difference between two points, much like you measure a voltage difference.
    • There are other kinds of variables.  For example, there are numerous variables that are flow variables.  Current and fluid flow variables are example of flow variables.  They usually have units of something per second.  (Current is couloumbs/sec, while water flow might be in gallons/sec. - for example.)
  • When you measure a voltage the two terminals of the voltmeter (in the figure, the red terminal and the black terminal) are connected to the two points where the voltage appears that you want to measure.  One terminal - say it is the red terminal - will then be at the same voltage as one of the points, and the other terminal - the black terminal - will be at the same voltage as the other point.  The meter then responds to the difference between these two voltages.
        Let's look at an example.  Here are three points.  These points could be anything and may be located in a circuit, for example.  Wherever they are, there is a voltage difference between any two of these points, and you could theoretically measure the voltage difference between any two of these points.  There are actually three different choices for voltage differences.  (Red/Green, Green/Blue, Blue/Red)  Then, for each difference, there are two different ways you can connect the voltmeter - switching red and black leads.

Let's check to see if you understand that.  Here are the same three points, but now they are points within a circuit.  In this particular circuit, the battery will produce a current that flows through the two resistors in series.

This circuit has a schematic representation shown below.

And, here is the same circuit with the measurement points (see above) marked.

Now, if you want to measure the voltage across Rb, here is a connection that will do it.

And, the physical circuit would look like this one.

        Now, the reason for taking this so slowly is that students often have trouble moving between circuit diagrams and the physical circuit and understanding how to translate between them.  What looks clear on a circuit diagram is not always as clear in the physical situation.  We'll get a little closer to physical reality in this exercise.


Exercise 1

     Here's a portion of a circuit board.  You want to measure the voltage across R27.  Click on both places where you should put the voltmeter leads.


        When you measure a voltage difference - whatever the instrument you use - you will always have two leads coming from the instrument that will have to be connected to the two points in your circuit across which the voltage appears.

        And, remember, the voltage might be any of the folowing.

  • The voltage might be across an element embedded in a circuit.
  • The voltage might be the output of a transducer measuring some physical variable like temperature, pH, rotational velocity (a tachometer), etc.
Next>>



Discussion Center

Discuss/
Query

Papers/
Syllabus

Feedback/
Suggestion

Yahoo
Groups

Sirfdosti
Groups

Contact
Us

MEMBERS LOGIN
  
Email ID:
Password:

  Forgot Password?
 New User? Register!

INTERVIEW EBOOK
Get 9,000+ Interview Questions & Answers in an eBook. Interview Question & Answer Guide
  • 9,000+ Interview Questions
  • All Questions Answered
  • 5 FREE Bonuses
  • Free Upgrades
GATE RESOURCES
 
  • Gate Books
  • Training Institutes
  • Gate FAQs
  • GATE BOOKS
     
  • Mechanical Engineeering Books
  • Robotics Automations Engineering Books
  • Civil Engineering Books
  • Chemical Engineering Books
  • Environmental Engineering Books
  • Electrical Engineering Books
  • Electronics Engineering Books
  • Information Technology Books
  • Software Engineering Books
  • GATE Preparation Books
  • Exciting Offers



    GATE Exam, Gate 2009, Gate Papers, Gate Preparation & Related Pages


    GATE Overview | GATE Eligibility | Structure Of GATE | GATE Training Institutes | Colleges Providing M.Tech/M.E. | GATE Score | GATE Results | PG with Scholarships | Article On GATE | GATE Forum | GATE 2009 Exclusive | GATE 2009 Syllabus | GATE Organizing Institute | Important Dates for GATE Exam | How to Apply for GATE | Discipline / Branch Codes | GATE Syllabus for Aerospace Engineering | GATE Syllabus for Agricultural Engineering | GATE Syllabus for Architecture and Planning | GATE Syllabus for Chemical Engineering | GATE Syllabus for Chemistry | GATE Syllabus for Civil Engineering | GATE Syllabus for Computer Science / IT | GATE Syllabus for Electronics and Communication Engineering | GATE Syllabus for Engineering Sciences | GATE Syllabus for Geology and Geophysics | GATE Syllabus for Instrumentation Engineering | GATE Syllabus for Life Sciences | GATE Syllabus for Mathematics | GATE Syllabus for Mechanical Engineering | GATE Syllabus for Metallurgical Engineering | GATE Syllabus for Mining Engineering | GATE Syllabus for Physics | GATE Syllabus for Production and Industrial Engineering | GATE Syllabus for Pharmaceutical Sciences | GATE Syllabus for Textile Engineering and Fibre Science | GATE Preparation | GATE Pattern | GATE Tips & Tricks | GATE Compare Evaluation | GATE Sample Papers | GATE Downloads | Experts View on GATE | CEED 2009 | CEED 2009 Exam | Eligibility for CEED Exam | Application forms of CEED Exam | Important Dates of CEED Exam | Contact Address for CEED Exam | CEED Examination Centres | CEED Sample Papers | Discuss GATE | GATE Forum of OneStopGATE.com | GATE Exam Cities | Contact Details for GATE | Bank Details for GATE | GATE Miscellaneous Info | GATE FAQs | Advertisement on GATE | Contact Us on OneStopGATE |
    Copyright © 2024. One Stop Gate.com. All rights reserved Testimonials |Link To Us |Sitemap |Privacy Policy | Terms and Conditions|About Us
    Our Portals : Academic Tutorials | Best eBooksworld | Beyond Stats | City Details | Interview Questions | India Job Forum | Excellent Mobiles | Free Bangalore | Give Me The Code | Gog Logo | Free Classifieds | Jobs Assist | Interview Questions | One Stop FAQs | One Stop GATE | One Stop GRE | One Stop IAS | One Stop MBA | One Stop SAP | One Stop Testing | Web Hosting | Quick Site Kit | Sirf Dosti | Source Codes World | Tasty Food | Tech Archive | Software Testing Interview Questions | Free Online Exams | The Galz | Top Masala | Vyom | Vyom eBooks | Vyom International | Vyom Links | Vyoms | Vyom World
    C Interview Questions | C++ Interview Questions | Send Free SMS | Placement Papers | SMS Jokes | Cool Forwards | Romantic Shayari