OneStopGate.Com
OnestopGate   OnestopGate
   Monday, January 20, 2025 Login  
OnestopGate
Home | Overview | Syllabus | Tutorials | FAQs | Downloads | Recommended Websites | Advertise | Payments | Contact Us | Forum
OneStopGate

GATE Resources
Gate Articles
Gate Books
Gate Colleges 
Gate Downloads 
Gate Faqs
Gate Jobs
Gate News 
Gate Sample Papers
Training Institutes

GATE Overview
Overview
GATE Eligibility
Structure Of GATE
GATE Coaching Centers
Colleges Providing M.Tech/M.E.
GATE Score
GATE Results
PG with Scholarships
Article On GATE
Admission Process For M.Tech/ MCP-PhD
GATE Topper 2012-13
GATE Forum




GATE 2026 Exclusive
Organizing Institute
Important Dates
How to Apply
Discipline Codes
GATE 2026 Exam Structure

GATE 2026 Syllabus
Aerospace Engg..
Agricultural Engg..
Architecture and Planning
Chemical Engg..
Chemistry
Civil Engg..
Computer Science / IT
Electronics & Communication Engg..
Electrical Engg..
Engineering Sciences
Geology and Geophysics
Instrumentation Engineering
Life Sciences
Mathematics
Mechanical Engg..
Metallurgical Engg..
Mining Engg..
Physics
Production & Industrial Engg..
Pharmaceutical Sciences
Textile Engineering and Fibre Science

GATE Study Material
Aerospace Engg..
Agricultural Engg..
Chemical Engg..
Chemistry
Civil Engg..
Computer Science / IT
Electronics & Communication Engg..
Electrical Engg..
Engineering Sciences
Instrumentation Engg..
Life Sciences
Mathematics
Mechanical Engg..
Physics
Pharmaceutical Sciences
Textile Engineering  and Fibre Science

GATE Preparation
GATE Pattern
GATE Tips N Tricks
Compare Evaluation
Sample Papers 
Gate Downloads 
Experts View

CEED 2013
CEED Exams
Eligibility
Application Forms
Important Dates
Contact Address
Examination Centres
CEED Sample Papers

Discuss GATE
GATE Forum
Exam Cities
Contact Details
Bank Details

Miscellaneous
Advertisment
Contact Us


Home » GATE Study Material » Electronics and Telecommunication » Antennas » Antenna directivity and gain

Antenna directivity and gain

Looking for GATE Preparation Material? Join & Get here now!

** Gate 2013 Question Papers.. ** CEED 2013 Results.. ** Gate 2013 Question Papers With Solutions.. ** GATE 2013 CUT-OFFs.. ** GATE 2013 Results.. **

Antenna directivity and gain

Antenna directivity and gain



- an overview, summary, tutorial about the basics of RF antenna directivity (aerial directivity) and gain including isotropic radiators, polar diagrams and antenna dBi figures and antenna dBd figures.


RF antennas or aerials do not radiate equally in all directions. It is found that any realisable RF antenna design will radiate more in some directions than others. The actual pattern is dependent upon the type of antenna design, its size, the environment and a variety of other factors. This directional pattern can be used to ensure that the power radiated is focussed in the desired directions.

It is normal to refer to the directional patterns and gain in terms of the transmitted signal. It is often easier to visualise the RF antenna is terms of its radiated power, however the antenna performs in an exactly equivalent manner for reception, having identical figures and specifications.

In order to visualise the way in which an antenna radiates a diagram known as a polar diagram is used. This is normally a two dimensional plot around an antenna showing the intensity of the radiation at each point for a particular plane. Normally the scale that is used is logarithmic so that the differences can be conveniently seen on the plot. Although the radiation pattern of the antenna varies in three dimensions, it is normal to make a plot in a particular plane, normally either horizontal or vertical as these are the two that are most used, and it simplifies the measurements and presentation. An example for a simple dipole antenna is shown below.

Polar diagram of a half wave dipole antenna in free space

Polar diagram of a half wave dipole in free space

Antenna designs are often categorised by the type of polar diagram they exhibit. For example an omni-directional antenna design is one which radiates equally (or approximately equally) in all directions in the plane of interest. An antenna design that radiates equally in all directions in all planes is called an isotropic antenna. As already mentioned it is not possible to produce one of these in reality, but it is useful as a theoretical reference for some measurements. Other RF antennas exhibit highly directional patterns and these may be utilised in a number of applications. The Yagi antenna is an example of a directive antenna and possibly it is most widely used for television reception.

Polar diagram of a directional antenna such as a Yagi

Polar diagram for a yagi antenna



RF antenna beamwidth


There are a number of key features that can be seen from this polar diagram. The first is that there is a main beam or lobe and a number of minor lobes. It is often useful to define the beam-width of an RF antenna. This is taken to be angle between the two points where the power falls to half its maximum level, and as a result it is sometimes called the half power beam-width.



Antenna gain


An RF antenna radiates a given amount of power. This is the power dissipated in the radiation resistance of the RF antenna. An isotropic radiator will distribute this equally in all directions. For an antenna with a directional pattern, less power will be radiated in some directions and more in others. The fact that more power is radiated in given directions implies that it can be considered to have a gain.

The gain can be defined as a ratio of the signal transmitted in the "maximum" direction to that of a standard or reference antenna. This may sometimes be called the "forward gain". The figure that is obtained is then normally expressed in decibels (dB). In theory the standard antenna could be almost anything but two types are generally used. The most common type is a simple dipole as it is easily available and it is the basis of many other types of antenna. In this case the gain is often expressed as dBd i.e. gain expressed in decibels over a dipole. However a dipole does not radiated equally in all directions in all planes and so an isotropic source is sometimes used. In this case the gain may be specified in dBi i.e. gain in decibels over an isotropic source. The main drawback with using an isotropic source (antenna dBi) as a reference is that it is not possible to realise them in practice and so that figures using it can only be theoretical. However it is possible to relate the two gains as a dipole has a gain of 2.1 dB over an isotropic source i.e. 2.1 dBi. In other words, figures expressed as gain over an isotropic source will be 2.1 dB higher than those relative to a dipole. When choosing an antenna and looking at the gain specifications, be sure to check whether the gain is relative to a dipole or an isotropic source, i.e. the antenna dBi figure of the antenna dBd figure.

Apart from the forward gain of an antenna another parameter which is important is the front to back ratio. This is expressed in decibels and as the name implies it is the ratio of the maximum signal in the forward direction to the signal in the opposite direction. This figure is normally expressed in decibels. It is found that the design of an antenna can be adjusted to give either maximum forward gain of the optimum front to back ratio as the two do not normally coincide exactly. For most VHF and UHF operation the design is normally optimised for the optimum forward gain as this gives the maximum radiated signal in the required direction.



RF antenna gain / beamwidth balance


It may appear that maximising the gain of an antenna will optimise its performance in a system. This may not always be the case. By the very nature of gain and beamwidth, increasing the gain will result in a reduction in the beamwidth. This will make setting the direction of the antenna more critical. This may be quite acceptable in many applications, but not in others. This balance should be considered when designing and setting up a radio link.



Discussion Center

Discuss/
Query

Papers/
Syllabus

Feedback/
Suggestion

Yahoo
Groups

Sirfdosti
Groups

Contact
Us

MEMBERS LOGIN
  
Email ID:
Password:

  Forgot Password?
 New User? Register!

INTERVIEW EBOOK
Get 9,000+ Interview Questions & Answers in an eBook. Interview Question & Answer Guide
  • 9,000+ Interview Questions
  • All Questions Answered
  • 5 FREE Bonuses
  • Free Upgrades
GATE RESOURCES
 
  • Gate Books
  • Training Institutes
  • Gate FAQs
  • GATE BOOKS
     
  • Mechanical Engineeering Books
  • Robotics Automations Engineering Books
  • Civil Engineering Books
  • Chemical Engineering Books
  • Environmental Engineering Books
  • Electrical Engineering Books
  • Electronics Engineering Books
  • Information Technology Books
  • Software Engineering Books
  • GATE Preparation Books
  • Exciting Offers



    GATE Exam, Gate 2009, Gate Papers, Gate Preparation & Related Pages


    GATE Overview | GATE Eligibility | Structure Of GATE | GATE Training Institutes | Colleges Providing M.Tech/M.E. | GATE Score | GATE Results | PG with Scholarships | Article On GATE | GATE Forum | GATE 2009 Exclusive | GATE 2009 Syllabus | GATE Organizing Institute | Important Dates for GATE Exam | How to Apply for GATE | Discipline / Branch Codes | GATE Syllabus for Aerospace Engineering | GATE Syllabus for Agricultural Engineering | GATE Syllabus for Architecture and Planning | GATE Syllabus for Chemical Engineering | GATE Syllabus for Chemistry | GATE Syllabus for Civil Engineering | GATE Syllabus for Computer Science / IT | GATE Syllabus for Electronics and Communication Engineering | GATE Syllabus for Engineering Sciences | GATE Syllabus for Geology and Geophysics | GATE Syllabus for Instrumentation Engineering | GATE Syllabus for Life Sciences | GATE Syllabus for Mathematics | GATE Syllabus for Mechanical Engineering | GATE Syllabus for Metallurgical Engineering | GATE Syllabus for Mining Engineering | GATE Syllabus for Physics | GATE Syllabus for Production and Industrial Engineering | GATE Syllabus for Pharmaceutical Sciences | GATE Syllabus for Textile Engineering and Fibre Science | GATE Preparation | GATE Pattern | GATE Tips & Tricks | GATE Compare Evaluation | GATE Sample Papers | GATE Downloads | Experts View on GATE | CEED 2009 | CEED 2009 Exam | Eligibility for CEED Exam | Application forms of CEED Exam | Important Dates of CEED Exam | Contact Address for CEED Exam | CEED Examination Centres | CEED Sample Papers | Discuss GATE | GATE Forum of OneStopGATE.com | GATE Exam Cities | Contact Details for GATE | Bank Details for GATE | GATE Miscellaneous Info | GATE FAQs | Advertisement on GATE | Contact Us on OneStopGATE |
    Copyright © 2025. One Stop Gate.com. All rights reserved Testimonials |Link To Us |Sitemap |Privacy Policy | Terms and Conditions|About Us
    Our Portals : Academic Tutorials | Best eBooksworld | Beyond Stats | City Details | Interview Questions | India Job Forum | Excellent Mobiles | Free Bangalore | Give Me The Code | Gog Logo | Free Classifieds | Jobs Assist | Interview Questions | One Stop FAQs | One Stop GATE | One Stop GRE | One Stop IAS | One Stop MBA | One Stop SAP | One Stop Testing | Web Hosting | Quick Site Kit | Sirf Dosti | Source Codes World | Tasty Food | Tech Archive | Software Testing Interview Questions | Free Online Exams | The Galz | Top Masala | Vyom | Vyom eBooks | Vyom International | Vyom Links | Vyoms | Vyom World
    C Interview Questions | C++ Interview Questions | Send Free SMS | Placement Papers | SMS Jokes | Cool Forwards | Romantic Shayari