OneStopGate.Com
OnestopGate   OnestopGate
   Saturday, November 2, 2024 Login  
OnestopGate
Home | Overview | Syllabus | Tutorials | FAQs | Downloads | Recommended Websites | Advertise | Payments | Contact Us | Forum
OneStopGate

GATE Resources
Gate Articles
Gate Books
Gate Colleges 
Gate Downloads 
Gate Faqs
Gate Jobs
Gate News 
Gate Sample Papers
Training Institutes

GATE Overview
Overview
GATE Eligibility
Structure Of GATE
GATE Coaching Centers
Colleges Providing M.Tech/M.E.
GATE Score
GATE Results
PG with Scholarships
Article On GATE
Admission Process For M.Tech/ MCP-PhD
GATE Topper 2012-13
GATE Forum




GATE 2025 Exclusive
Organizing Institute
Important Dates
How to Apply
Discipline Codes
GATE 2025 Exam Structure

GATE 2025 Syllabus
Aerospace Engg..
Agricultural Engg..
Architecture and Planning
Chemical Engg..
Chemistry
Civil Engg..
Computer Science / IT
Electronics & Communication Engg..
Electrical Engg..
Engineering Sciences
Geology and Geophysics
Instrumentation Engineering
Life Sciences
Mathematics
Mechanical Engg..
Metallurgical Engg..
Mining Engg..
Physics
Production & Industrial Engg..
Pharmaceutical Sciences
Textile Engineering and Fibre Science

GATE Study Material
Aerospace Engg..
Agricultural Engg..
Chemical Engg..
Chemistry
Civil Engg..
Computer Science / IT
Electronics & Communication Engg..
Electrical Engg..
Engineering Sciences
Instrumentation Engg..
Life Sciences
Mathematics
Mechanical Engg..
Physics
Pharmaceutical Sciences
Textile Engineering  and Fibre Science

GATE Preparation
GATE Pattern
GATE Tips N Tricks
Compare Evaluation
Sample Papers 
Gate Downloads 
Experts View

CEED 2013
CEED Exams
Eligibility
Application Forms
Important Dates
Contact Address
Examination Centres
CEED Sample Papers

Discuss GATE
GATE Forum
Exam Cities
Contact Details
Bank Details

Miscellaneous
Advertisment
Contact Us


Home » GATE Study Material » Electronics and Telecommunications » Electronic Components » Basic concepts behind the vacuum tube

Basic concepts behind the vacuum tube

Looking for GATE Preparation Material? Join & Get here now!

** Gate 2013 Question Papers.. ** CEED 2013 Results.. ** Gate 2013 Question Papers With Solutions.. ** GATE 2013 CUT-OFFs.. ** GATE 2013 Results.. **

Basic concepts behind the vacuum tube

Vacuum tube basic introduction

- the basic idea, concept and theory behind the vacuum tube or thermionic valve

Thermionic valves or vacuum tubes come in many forms including the diode, triode, tetrode, pentode, heptode and many more. These tubes have been manufactured by the millions in years gone by and even today the basic technology finds applications in today's electronics scene. It was the vacuum tube that first opened the way to what we know as electronics today, enabling first rectifiers and then active devices to be made and used.

Although vacuum tube technology may appear to be dated in the highly semiconductor orientated electronics industry, many thermionic valves or vacuum tubes are still used today in applications ranging from vintage wireless sets to high power radio transmitters. However the most widely used thermionic device today is the cathode ray tube that is still manufactured by the million for use in television sets, computer monitors, oscilloscopes and a variety of other electronic equipment.

 

Basics


The simplest form of vacuum tube is the diode. It is ideal to use this as the first building block for explanations of the technology. It consists of two electrodes: a cathode and anode held within an evacuated glass bulb, connections being made to them through the glass envelope.

If a cathode is heated, it is found that electrons from the cathode become increasingly active and as the temperature increases they can actually leave the cathode and enter the surrounding space.

When an electron leaves the cathode it leaves behind a positive charge, equal but opposite to that of the electron. In fact there are many millions of electrons leaving the cathode. As unlike charges attract, this means that there is a force pulling the electrons back to the cathode. Unless there are any further influences the electrons would stay in the vicinity of the cathode, leaving the cathode as a result of the energy given to them as a result of the temperature, but being pulled back by the positive charge on the cathode.

Thermionic emission in a vacuum tube

Concept of thermionic emission

In a diode vacuum tube there is also another electrode called the anode. If a positive potential is applied to this electrode, the electrons will be attracted by this potential and will move towards it if it is at a higher potential than the cathode.

For the optimum performance the space between the cathode and the anode should be a vacuum. If there are any gas molecules in the space in which the electrons travel, collisions will occur and this will impede the flow of electrons. If an appreciable amount of gas is present, the electrons will ionise the gas, giving rise to a blue glow between the electrodes. In the early days of valves, it was thought that a certain amount of gas was necessary in the envelope. Later this was discovered that this was not the case and new "hard" valves were made that had a superior performance to the older "soft" valves.

 

Space charge


The electrons flowing between the cathode and the anode form a cloud which is known as the "space charge". It can tend to repel electrons leaving the cathode, but if the potential applied to the anode is sufficiently high then it will be overcome, and electrons will flow toward the anode. In this way the circuit is completed and current flows.

As the potential is increased on the anode, so the current increases until a point is reached where the space change is completely neutralised and the maximum emission from the cathode is reached. At this point the emission can only be increased by increasing the cathode temperature to increase the energy of the electrons and allow further electrons to leave the cathode.

Vacuum tube with cathode and anode

Concept of vacuum tube diode with cathode and anode

If the anode potential is reversed, and made negative with respect to the cathode it will repel the electrons. No electrons will be emitted from the anode as it is not hot, and no current flows. This means that current can only flow in one direction. In other words the device only allows current in one direction, blocking it in the other. In view of this effect, the inventor of the diode vacuum tube, Professor Sir Ambrose Fleming called it an "oscillation valve" in view of its one way action.

 

Control of current flow


Although the basic concept of the vacuum tube enabled a rectifier to be made, it does not allow for another form of control of the flow of electrons in the anode circuit. However it was discovered that is a further potential was placed between the cathode and the anode this could be used to control the flow of electrons between the cathode and anode. Once the theoretical idea was devised, it was necessary to implement a way of placing this potential in the right place. A n electrode known as a grid in the form of a thin mesh or wire through which the electrons could pass, was inserted between the cathode and anode. It was found that by varying the potential on the grid, this could alter the flow of electrons. The grid is normally placed at a voltage below that of the cathode so that it repels the electrons and counteracts the effect of the pull on the electrons from the potential on the anode. If the voltage on the grid is varied then it will vary or control the level of current flowing between the cathode and the anode. As such this form of grid is known as a control grid. It makes the vacuum tube into an active device that is capable of amplifying signals.

 

Further grids


The basic thermionic tube with three electrodes is called a triode in view of the number of electrodes. To improve the performance of the tube, further grids may be added. These tubes are given generic names that describe the number of electrodes, and therby giving an indication of the type of tube and performance.

 

Number of grids Total number of electrodes Generic name
1 3 Triode
2 4 Tetrode
3 5 Pentode
4 6 Hexode
5 7 Heptode
6 8 Octode
 

 

Summary


The basic concept of the vacuum tube outlined here enables signals to be rectified and amplified. Many refinements have been added in the form of further grids to enable much better performance to be obtained, but the principles involved are all the same.



Discussion Center

Discuss/
Query

Papers/
Syllabus

Feedback/
Suggestion

Yahoo
Groups

Sirfdosti
Groups

Contact
Us

MEMBERS LOGIN
  
Email ID:
Password:

  Forgot Password?
 New User? Register!

INTERVIEW EBOOK
Get 9,000+ Interview Questions & Answers in an eBook. Interview Question & Answer Guide
  • 9,000+ Interview Questions
  • All Questions Answered
  • 5 FREE Bonuses
  • Free Upgrades
GATE RESOURCES
 
  • Gate Books
  • Training Institutes
  • Gate FAQs
  • GATE BOOKS
     
  • Mechanical Engineeering Books
  • Robotics Automations Engineering Books
  • Civil Engineering Books
  • Chemical Engineering Books
  • Environmental Engineering Books
  • Electrical Engineering Books
  • Electronics Engineering Books
  • Information Technology Books
  • Software Engineering Books
  • GATE Preparation Books
  • Exciting Offers



    GATE Exam, Gate 2009, Gate Papers, Gate Preparation & Related Pages


    GATE Overview | GATE Eligibility | Structure Of GATE | GATE Training Institutes | Colleges Providing M.Tech/M.E. | GATE Score | GATE Results | PG with Scholarships | Article On GATE | GATE Forum | GATE 2009 Exclusive | GATE 2009 Syllabus | GATE Organizing Institute | Important Dates for GATE Exam | How to Apply for GATE | Discipline / Branch Codes | GATE Syllabus for Aerospace Engineering | GATE Syllabus for Agricultural Engineering | GATE Syllabus for Architecture and Planning | GATE Syllabus for Chemical Engineering | GATE Syllabus for Chemistry | GATE Syllabus for Civil Engineering | GATE Syllabus for Computer Science / IT | GATE Syllabus for Electronics and Communication Engineering | GATE Syllabus for Engineering Sciences | GATE Syllabus for Geology and Geophysics | GATE Syllabus for Instrumentation Engineering | GATE Syllabus for Life Sciences | GATE Syllabus for Mathematics | GATE Syllabus for Mechanical Engineering | GATE Syllabus for Metallurgical Engineering | GATE Syllabus for Mining Engineering | GATE Syllabus for Physics | GATE Syllabus for Production and Industrial Engineering | GATE Syllabus for Pharmaceutical Sciences | GATE Syllabus for Textile Engineering and Fibre Science | GATE Preparation | GATE Pattern | GATE Tips & Tricks | GATE Compare Evaluation | GATE Sample Papers | GATE Downloads | Experts View on GATE | CEED 2009 | CEED 2009 Exam | Eligibility for CEED Exam | Application forms of CEED Exam | Important Dates of CEED Exam | Contact Address for CEED Exam | CEED Examination Centres | CEED Sample Papers | Discuss GATE | GATE Forum of OneStopGATE.com | GATE Exam Cities | Contact Details for GATE | Bank Details for GATE | GATE Miscellaneous Info | GATE FAQs | Advertisement on GATE | Contact Us on OneStopGATE |
    Copyright © 2024. One Stop Gate.com. All rights reserved Testimonials |Link To Us |Sitemap |Privacy Policy | Terms and Conditions|About Us
    Our Portals : Academic Tutorials | Best eBooksworld | Beyond Stats | City Details | Interview Questions | India Job Forum | Excellent Mobiles | Free Bangalore | Give Me The Code | Gog Logo | Free Classifieds | Jobs Assist | Interview Questions | One Stop FAQs | One Stop GATE | One Stop GRE | One Stop IAS | One Stop MBA | One Stop SAP | One Stop Testing | Web Hosting | Quick Site Kit | Sirf Dosti | Source Codes World | Tasty Food | Tech Archive | Software Testing Interview Questions | Free Online Exams | The Galz | Top Masala | Vyom | Vyom eBooks | Vyom International | Vyom Links | Vyoms | Vyom World
    C Interview Questions | C++ Interview Questions | Send Free SMS | Placement Papers | SMS Jokes | Cool Forwards | Romantic Shayari