OneStopGate.Com
OnestopGate   OnestopGate
   Saturday, November 2, 2024 Login  
OnestopGate
Home | Overview | Syllabus | Tutorials | FAQs | Downloads | Recommended Websites | Advertise | Payments | Contact Us | Forum
OneStopGate

GATE Resources
Gate Articles
Gate Books
Gate Colleges 
Gate Downloads 
Gate Faqs
Gate Jobs
Gate News 
Gate Sample Papers
Training Institutes

GATE Overview
Overview
GATE Eligibility
Structure Of GATE
GATE Coaching Centers
Colleges Providing M.Tech/M.E.
GATE Score
GATE Results
PG with Scholarships
Article On GATE
Admission Process For M.Tech/ MCP-PhD
GATE Topper 2012-13
GATE Forum




GATE 2025 Exclusive
Organizing Institute
Important Dates
How to Apply
Discipline Codes
GATE 2025 Exam Structure

GATE 2025 Syllabus
Aerospace Engg..
Agricultural Engg..
Architecture and Planning
Chemical Engg..
Chemistry
Civil Engg..
Computer Science / IT
Electronics & Communication Engg..
Electrical Engg..
Engineering Sciences
Geology and Geophysics
Instrumentation Engineering
Life Sciences
Mathematics
Mechanical Engg..
Metallurgical Engg..
Mining Engg..
Physics
Production & Industrial Engg..
Pharmaceutical Sciences
Textile Engineering and Fibre Science

GATE Study Material
Aerospace Engg..
Agricultural Engg..
Chemical Engg..
Chemistry
Civil Engg..
Computer Science / IT
Electronics & Communication Engg..
Electrical Engg..
Engineering Sciences
Instrumentation Engg..
Life Sciences
Mathematics
Mechanical Engg..
Physics
Pharmaceutical Sciences
Textile Engineering  and Fibre Science

GATE Preparation
GATE Pattern
GATE Tips N Tricks
Compare Evaluation
Sample Papers 
Gate Downloads 
Experts View

CEED 2013
CEED Exams
Eligibility
Application Forms
Important Dates
Contact Address
Examination Centres
CEED Sample Papers

Discuss GATE
GATE Forum
Exam Cities
Contact Details
Bank Details

Miscellaneous
Advertisment
Contact Us


Home » GATE Study Material » Electronics and Telecommunications » Electronic Components » Photomultiplier

Photomultiplier

Looking for GATE Preparation Material? Join & Get here now!

** Gate 2013 Question Papers.. ** CEED 2013 Results.. ** Gate 2013 Question Papers With Solutions.. ** GATE 2013 CUT-OFFs.. ** GATE 2013 Results.. **

Photomultiplier

What is a Photomultiplier?

- an overview or tutorial about the basics of what is a photomultiplier used in sensing light and creating images.

Photomultipliers are still in widespread use today. They are extremely sensitive detectors of light including visible light, ultraviolet light and near infrared. As such they are very valuable in detecting all forms of visible and nearly visible light when levels are low or very low.

The great advantage of photomultipliers is their extreme sensitivity. They are able to multiply the signal produced by the incident light by figures up to 100 million. In addition to their very high levels of gain, photomultipliers also exhibit a low noise level, high frequency response and a large collection area. These advantages have meant that despite all the advances in photodiode technology, photomultipliers are still used in virtually all cases when low levels of light need to be detected.



In view of their performance photomultipliers are still used in many areas including particle physics, astronomy, medical imaging and motion picture film scanning.


Photomultiplier construction

Photomultipliers are contained within a glass tube that maintains a vacuum within the device. There are three main electrodes within a photomultiplier:

  1. Photocathode

  2. Dynodes

  3. Anode

 

Within the envelope of the photomultiplier, there is one photocathode, one anode, but there are several dynodes. The anode and dynode are traditional metallic electrodes with coated surfaces, but the photocathode is actually a thin deposit on the entry window.


Photomultiplier operation

Photons enter the photomultiplier and strike the photocathode. When this occurs, electrons are produced as a result of the photoelectric effect.

Once the electrons have been generated they are directed towards an area of the photomultiplier called the electron multiplier. As the name suggests, this area serves to increase or multiply the number of electrons by a process known as secondary emission.

The electron multiplier is made up from a number of electrodes, called dynodes. These dynodes have different voltages on them, each one is more positive voltage than the previous one to provide the required environment to produce the electron multiplication effect. This operates by pulling electrons progressively towards the more positive areas in the following way. The electrons leave the photocathode with the energy received from the incoming photon. They move towards the first dynode and they are accelerated by the electric field and they arrive with much greater energy than they left the cathode. When they strike the first dynode more low energy electrons are released, and these are in turn attracted by the greater positive field of the next dynode, and these electrons are similarly accelerated by the greater positive potential of the second dynode, and this process is repeated along all the dynodes until the electrons reach the anode where they are collected.

The geometry of the dynode chain is carefully designed so that a cascade effect occurs along its length with an ever increasing number of electrons being produced at each stage. When the anode is reached, the accumulation of charge results in a sharp current pulse for the arrival of each photon at the photocathode.


Photomultiplier use

Photomultipliers require the use of high voltages for their operation. Typically they require maximum voltages in the region of 1 - 2 kV. In the same way that a thermionic valve or vacuum tube has the cathode as the most negative electrode, the same is true for a photomultiplier. Similarly the anode is the most positive electrode. The dynodes are held at intermediate voltages that are normally generated using a resistive potential divider.

It is also necessary to ensure the photomultiplier is mounted and sued with care. Stray magnetic fields can affect their operation as the electron stream can be bent and the operation of the device impaired. To overcome this photomultipliers are normally mounted in a mu-metal screen to prevent stray magnetic fields affecting the device.

It is also necessary to screen the device from excessive light levels while in operation. High light levels can destroy the devices due to them being overexcited.



Discussion Center

Discuss/
Query

Papers/
Syllabus

Feedback/
Suggestion

Yahoo
Groups

Sirfdosti
Groups

Contact
Us

MEMBERS LOGIN
  
Email ID:
Password:

  Forgot Password?
 New User? Register!

INTERVIEW EBOOK
Get 9,000+ Interview Questions & Answers in an eBook. Interview Question & Answer Guide
  • 9,000+ Interview Questions
  • All Questions Answered
  • 5 FREE Bonuses
  • Free Upgrades
GATE RESOURCES
 
  • Gate Books
  • Training Institutes
  • Gate FAQs
  • GATE BOOKS
     
  • Mechanical Engineeering Books
  • Robotics Automations Engineering Books
  • Civil Engineering Books
  • Chemical Engineering Books
  • Environmental Engineering Books
  • Electrical Engineering Books
  • Electronics Engineering Books
  • Information Technology Books
  • Software Engineering Books
  • GATE Preparation Books
  • Exciting Offers



    GATE Exam, Gate 2009, Gate Papers, Gate Preparation & Related Pages


    GATE Overview | GATE Eligibility | Structure Of GATE | GATE Training Institutes | Colleges Providing M.Tech/M.E. | GATE Score | GATE Results | PG with Scholarships | Article On GATE | GATE Forum | GATE 2009 Exclusive | GATE 2009 Syllabus | GATE Organizing Institute | Important Dates for GATE Exam | How to Apply for GATE | Discipline / Branch Codes | GATE Syllabus for Aerospace Engineering | GATE Syllabus for Agricultural Engineering | GATE Syllabus for Architecture and Planning | GATE Syllabus for Chemical Engineering | GATE Syllabus for Chemistry | GATE Syllabus for Civil Engineering | GATE Syllabus for Computer Science / IT | GATE Syllabus for Electronics and Communication Engineering | GATE Syllabus for Engineering Sciences | GATE Syllabus for Geology and Geophysics | GATE Syllabus for Instrumentation Engineering | GATE Syllabus for Life Sciences | GATE Syllabus for Mathematics | GATE Syllabus for Mechanical Engineering | GATE Syllabus for Metallurgical Engineering | GATE Syllabus for Mining Engineering | GATE Syllabus for Physics | GATE Syllabus for Production and Industrial Engineering | GATE Syllabus for Pharmaceutical Sciences | GATE Syllabus for Textile Engineering and Fibre Science | GATE Preparation | GATE Pattern | GATE Tips & Tricks | GATE Compare Evaluation | GATE Sample Papers | GATE Downloads | Experts View on GATE | CEED 2009 | CEED 2009 Exam | Eligibility for CEED Exam | Application forms of CEED Exam | Important Dates of CEED Exam | Contact Address for CEED Exam | CEED Examination Centres | CEED Sample Papers | Discuss GATE | GATE Forum of OneStopGATE.com | GATE Exam Cities | Contact Details for GATE | Bank Details for GATE | GATE Miscellaneous Info | GATE FAQs | Advertisement on GATE | Contact Us on OneStopGATE |
    Copyright © 2024. One Stop Gate.com. All rights reserved Testimonials |Link To Us |Sitemap |Privacy Policy | Terms and Conditions|About Us
    Our Portals : Academic Tutorials | Best eBooksworld | Beyond Stats | City Details | Interview Questions | India Job Forum | Excellent Mobiles | Free Bangalore | Give Me The Code | Gog Logo | Free Classifieds | Jobs Assist | Interview Questions | One Stop FAQs | One Stop GATE | One Stop GRE | One Stop IAS | One Stop MBA | One Stop SAP | One Stop Testing | Web Hosting | Quick Site Kit | Sirf Dosti | Source Codes World | Tasty Food | Tech Archive | Software Testing Interview Questions | Free Online Exams | The Galz | Top Masala | Vyom | Vyom eBooks | Vyom International | Vyom Links | Vyoms | Vyom World
    C Interview Questions | C++ Interview Questions | Send Free SMS | Placement Papers | SMS Jokes | Cool Forwards | Romantic Shayari