OneStopGate.Com
OnestopGate   OnestopGate
   Saturday, November 23, 2024 Login  
OnestopGate
Home | Overview | Syllabus | Tutorials | FAQs | Downloads | Recommended Websites | Advertise | Payments | Contact Us | Forum
OneStopGate

GATE Resources
Gate Articles
Gate Books
Gate Colleges 
Gate Downloads 
Gate Faqs
Gate Jobs
Gate News 
Gate Sample Papers
Training Institutes

GATE Overview
Overview
GATE Eligibility
Structure Of GATE
GATE Coaching Centers
Colleges Providing M.Tech/M.E.
GATE Score
GATE Results
PG with Scholarships
Article On GATE
Admission Process For M.Tech/ MCP-PhD
GATE Topper 2012-13
GATE Forum




GATE 2025 Exclusive
Organizing Institute
Important Dates
How to Apply
Discipline Codes
GATE 2025 Exam Structure

GATE 2025 Syllabus
Aerospace Engg..
Agricultural Engg..
Architecture and Planning
Chemical Engg..
Chemistry
Civil Engg..
Computer Science / IT
Electronics & Communication Engg..
Electrical Engg..
Engineering Sciences
Geology and Geophysics
Instrumentation Engineering
Life Sciences
Mathematics
Mechanical Engg..
Metallurgical Engg..
Mining Engg..
Physics
Production & Industrial Engg..
Pharmaceutical Sciences
Textile Engineering and Fibre Science

GATE Study Material
Aerospace Engg..
Agricultural Engg..
Chemical Engg..
Chemistry
Civil Engg..
Computer Science / IT
Electronics & Communication Engg..
Electrical Engg..
Engineering Sciences
Instrumentation Engg..
Life Sciences
Mathematics
Mechanical Engg..
Physics
Pharmaceutical Sciences
Textile Engineering  and Fibre Science

GATE Preparation
GATE Pattern
GATE Tips N Tricks
Compare Evaluation
Sample Papers 
Gate Downloads 
Experts View

CEED 2013
CEED Exams
Eligibility
Application Forms
Important Dates
Contact Address
Examination Centres
CEED Sample Papers

Discuss GATE
GATE Forum
Exam Cities
Contact Details
Bank Details

Miscellaneous
Advertisment
Contact Us


Home » GATE Study Material » Electronics and Telecommunications » Electronic Components » Summary of capacitor types

Summary of capacitor types

Looking for GATE Preparation Material? Join & Get here now!

** Gate 2013 Question Papers.. ** CEED 2013 Results.. ** Gate 2013 Question Papers With Solutions.. ** GATE 2013 CUT-OFFs.. ** GATE 2013 Results.. **

Summary of capacitor types

Capacitor types and their uses

- an overview, information and tutorial about the different capacitor types and the uses these different types of electronic capacitors may be suited to as electronic components within electronic circuits.

Electronic capacitors are one of the most widely used electronic components. These electronic capacitors only allow alternating or changing signals to pass through them, and as a result they find applications in many different areas of electronic circuit design. There are a wide variety of types of capacitor including electrolytic, ceramic, tantalum, plastic, sliver mica, and many more. Each capacitor type has its own advantages and disadvantages can be used in different applications.


Capacitor construction

In essence the construction of an electronic capacitor is very simple, although in practice a lot of research and development has been put into capacitor technology. The basic electronics components consist of two plates that are insulated from one another. In between them there is an insulating medium known as the dielectric. The value of the electronic capacitor is dependent upon the area of the plates, the distance between them and the dielectric constant of the material or dielectric between them. The greater the area of the plates, the closer they are together and the greater the value of the dielectric constant the greater the value of capacitance.

Today, electronic capacitors are able to provide relatively high levels of capacitance within components that occupy a small volume. This is achieved in a number of ways. One is to have several sets of plates, and another is to place the plates very close to one another, having a thin layer of dielectric placed between them. In addition to this special insulating dielectric materials have been developed to enable high levels of capacitance to be achieved.

The method of construction of these electronic components is also important. In some capacitors the plates may be flat, and normally these capacitors will have rectangular, or more exactly cuboid shapes. Some will be tubular and in these capacitors the plates will be wound round on each other. The reasons for these types of construction are normally dependent upon the way in which the capacitors must be manufactured. The final stage in the construction of an electronic capacitor is to place it in a protective casing. In some instances it may be dipped in an insulating coating, in others it may be contained within a metal can.

Some capacitors types are what are termed polar or polarised. When this is the case the electronic capacitor has a positive and a negative connection and it must be placed in circuit so that the voltage across it is in a particular sense. If the voltage is incorrectly placed across the component then it may be damaged. Fortunately many capacitors, and in particular low value ones are non-polar and can be placed in circuit either way round.

Although there is a large variety that are available the most commonly used are ceramic, plastic film types, electrolytic and tantalum. These names refer to the type of dielectric that is used within the capacitor.


Ceramic

Ceramic capacitors are normally used for radio frequency and some audio applications. Ceramic capacitors range in value from figures as low as a few picofarads to around 0.1 microfarads. In view of their wide range and suitability for RF applications they are used for coupling and decoupling applications in particular. Here these ceramic capacitors are by far the most commonly used type being cheap and reliable and their loss factor is particularly low although this is dependent on the exact dielectric in use. Their stability and tolerance is not nearly as good as silver mica types, but their cost is much less.

There are a number of dielectrics that can be used with ceramic capacitors. For low values a dielectric designated "COG" is normally used. This has the lowest dielectric constant but gives the highest stability and lowest loss. Where higher values are required in a given size, a dielectric with a higher dielectric constant must be used. Types with designations X7R and for higher values, Z5U are used, however their stability and loss are not as good as the capacitors made with COG dielectric.


Silver Mica

Silver mica capacitors are not as widely used these days as they used to be. However these electronic components can still be obtained and are used where stability of value is of the utmost importance and where low loss is required. In view of this one of their major uses is within the tuned elements of circuits like oscillators, or within filters.

Values are normally in the range between a few picofarads up to two or possibly three thousand picofarads.

For this type of capacitor the silver electrodes are plated directly on to the mica dielectric. Again several layers are used to achieve the required capacitance. Wires for the connections are added and then the whole assembly is encapsulated.


Plastic film capacitors

There is a number of different types of plastic film capacitors. Polycarbonate capacitors, polyester capacitors and polystyrene capacitors are some of the most common. Each of these electronic components has its own properties, allowing them to be used in specific applications. Their values may range anywhere from several picofarads to a few microfarads dependent upon the actual type. Normally they are non-polar. In general they are good general-purpose capacitors that may be used for a variety of purposes, although their high frequency performance is not usually as good as that of the ceramic types.


Electrolytic capacitors

Electrolytic capacitors are the most popular type for values greater than about 1 microfarad. Electrolytic capacitors are constructed using a thin film of oxide on an aluminium foil. An electrolyte is used to make contact with the other plate. The two plates are wound around on one another and then placed into a can that is often aluminium.

Electrolytic capacitors are polarised, and care should be taken to ensure they are placed in circuit the correct way round. If they are connected incorrectly they can be damaged, and in some extreme instances they can explode. Great care should also be taken not to exceed the rated working voltage of the electrolytic capacitor. Normally they should be operated well below this value. Also in power supply applications significant amounts of current may be drawn from them. Accordingly electrolytic capacitors intended for these applications have a ripple current rating which should also not be exceeded. If it is, then the electronic component may become excessively hot and fail. It is also worth noting that these components have a limited life. It is often as little as 1000 hours at the maximum rating. This may be considerably extended if the component is run well below its maximum rating.

Electrolytic capacitors have a wide tolerance. Typically the value of the component may be stated with a tolerance of -50% +100%. Despite this they are widely used in audio applications as coupling capacitors, and in smoothing applications for power supplies.

These are normally contained in a tubular aluminium can, each end being marked to show its polarity.


Tantalum capacitors

Ordinary aluminium electrolytic capacitors are rather large for many uses. In applications where size is of importance tantalum capacitors may be used. These are much smaller than the aluminium electrolytic capacitors and instead of using a film of oxide on aluminium they us a film of oxide on tantalum. Tantalum capacitors do not normally have high working voltages, 35V is normally the maximum, and some even have values of only a volt or so.

Like electrolytic capacitors, tantalum capacitors are also polarised and they are very intolerant of being reverse biased, often exploding when placed under stress. However their small size makes them very attractive for many applications.


Table of capacitor types and capacitor uses and applications

The most suitable way to summarise the various types of capacitor and the applications for which these electronic capacitors are suited is in a table.

 

Application Suitable types Reasons
Power supply smoothing Aluminium electrolytic High capacity, high ripple current
Audio frequency coupling Aluminium electrolytic<

Tantalum

Polyester / polycarbonate
High capacitance

High capacitance, small size

Cheap, but values not as high as electrolytics
RF coupling Ceramic COG

Ceramic X7R

 

Polystyrene
Small, cheap, low loss

Small cheap, but higher loss than COG

Very low loss, but larger than ceramic
RF decoupling Ceramic COG

 

Ceramic X7R
Small, low loss. Values limited to around 1000 pF

Small, low loss, higher values available than for COG types
Tuned circuits Silver mica

Ceramic COG
Close tolerance, low loss

Close tolerance, low loss, although not as good as silver mica
 


Summary

There is a huge number of different capacitor types and they are one of the most widely used electronic components. While different capacitors may have the same value, each different type of capacitor has its own properties and this will make this particular electronic capacitor suitable for a particular application. If the wrong type of capacitor is used, then it can make a circuit function incorrectly. As a result, choosing an electronic capacitor for a circuit means making more than the value calculations. Choosing the correct capacitor type is equally important.



Discussion Center

Discuss/
Query

Papers/
Syllabus

Feedback/
Suggestion

Yahoo
Groups

Sirfdosti
Groups

Contact
Us

MEMBERS LOGIN
  
Email ID:
Password:

  Forgot Password?
 New User? Register!

INTERVIEW EBOOK
Get 9,000+ Interview Questions & Answers in an eBook. Interview Question & Answer Guide
  • 9,000+ Interview Questions
  • All Questions Answered
  • 5 FREE Bonuses
  • Free Upgrades
GATE RESOURCES
 
  • Gate Books
  • Training Institutes
  • Gate FAQs
  • GATE BOOKS
     
  • Mechanical Engineeering Books
  • Robotics Automations Engineering Books
  • Civil Engineering Books
  • Chemical Engineering Books
  • Environmental Engineering Books
  • Electrical Engineering Books
  • Electronics Engineering Books
  • Information Technology Books
  • Software Engineering Books
  • GATE Preparation Books
  • Exciting Offers



    GATE Exam, Gate 2009, Gate Papers, Gate Preparation & Related Pages


    GATE Overview | GATE Eligibility | Structure Of GATE | GATE Training Institutes | Colleges Providing M.Tech/M.E. | GATE Score | GATE Results | PG with Scholarships | Article On GATE | GATE Forum | GATE 2009 Exclusive | GATE 2009 Syllabus | GATE Organizing Institute | Important Dates for GATE Exam | How to Apply for GATE | Discipline / Branch Codes | GATE Syllabus for Aerospace Engineering | GATE Syllabus for Agricultural Engineering | GATE Syllabus for Architecture and Planning | GATE Syllabus for Chemical Engineering | GATE Syllabus for Chemistry | GATE Syllabus for Civil Engineering | GATE Syllabus for Computer Science / IT | GATE Syllabus for Electronics and Communication Engineering | GATE Syllabus for Engineering Sciences | GATE Syllabus for Geology and Geophysics | GATE Syllabus for Instrumentation Engineering | GATE Syllabus for Life Sciences | GATE Syllabus for Mathematics | GATE Syllabus for Mechanical Engineering | GATE Syllabus for Metallurgical Engineering | GATE Syllabus for Mining Engineering | GATE Syllabus for Physics | GATE Syllabus for Production and Industrial Engineering | GATE Syllabus for Pharmaceutical Sciences | GATE Syllabus for Textile Engineering and Fibre Science | GATE Preparation | GATE Pattern | GATE Tips & Tricks | GATE Compare Evaluation | GATE Sample Papers | GATE Downloads | Experts View on GATE | CEED 2009 | CEED 2009 Exam | Eligibility for CEED Exam | Application forms of CEED Exam | Important Dates of CEED Exam | Contact Address for CEED Exam | CEED Examination Centres | CEED Sample Papers | Discuss GATE | GATE Forum of OneStopGATE.com | GATE Exam Cities | Contact Details for GATE | Bank Details for GATE | GATE Miscellaneous Info | GATE FAQs | Advertisement on GATE | Contact Us on OneStopGATE |
    Copyright © 2024. One Stop Gate.com. All rights reserved Testimonials |Link To Us |Sitemap |Privacy Policy | Terms and Conditions|About Us
    Our Portals : Academic Tutorials | Best eBooksworld | Beyond Stats | City Details | Interview Questions | India Job Forum | Excellent Mobiles | Free Bangalore | Give Me The Code | Gog Logo | Free Classifieds | Jobs Assist | Interview Questions | One Stop FAQs | One Stop GATE | One Stop GRE | One Stop IAS | One Stop MBA | One Stop SAP | One Stop Testing | Web Hosting | Quick Site Kit | Sirf Dosti | Source Codes World | Tasty Food | Tech Archive | Software Testing Interview Questions | Free Online Exams | The Galz | Top Masala | Vyom | Vyom eBooks | Vyom International | Vyom Links | Vyoms | Vyom World
    C Interview Questions | C++ Interview Questions | Send Free SMS | Placement Papers | SMS Jokes | Cool Forwards | Romantic Shayari