OneStopGate.Com
OnestopGate   OnestopGate
   Tuesday, November 19, 2024 Login  
OnestopGate
Home | Overview | Syllabus | Tutorials | FAQs | Downloads | Recommended Websites | Advertise | Payments | Contact Us | Forum
OneStopGate

GATE Resources
Gate Articles
Gate Books
Gate Colleges 
Gate Downloads 
Gate Faqs
Gate Jobs
Gate News 
Gate Sample Papers
Training Institutes

GATE Overview
Overview
GATE Eligibility
Structure Of GATE
GATE Coaching Centers
Colleges Providing M.Tech/M.E.
GATE Score
GATE Results
PG with Scholarships
Article On GATE
Admission Process For M.Tech/ MCP-PhD
GATE Topper 2012-13
GATE Forum




GATE 2025 Exclusive
Organizing Institute
Important Dates
How to Apply
Discipline Codes
GATE 2025 Exam Structure

GATE 2025 Syllabus
Aerospace Engg..
Agricultural Engg..
Architecture and Planning
Chemical Engg..
Chemistry
Civil Engg..
Computer Science / IT
Electronics & Communication Engg..
Electrical Engg..
Engineering Sciences
Geology and Geophysics
Instrumentation Engineering
Life Sciences
Mathematics
Mechanical Engg..
Metallurgical Engg..
Mining Engg..
Physics
Production & Industrial Engg..
Pharmaceutical Sciences
Textile Engineering and Fibre Science

GATE Study Material
Aerospace Engg..
Agricultural Engg..
Chemical Engg..
Chemistry
Civil Engg..
Computer Science / IT
Electronics & Communication Engg..
Electrical Engg..
Engineering Sciences
Instrumentation Engg..
Life Sciences
Mathematics
Mechanical Engg..
Physics
Pharmaceutical Sciences
Textile Engineering  and Fibre Science

GATE Preparation
GATE Pattern
GATE Tips N Tricks
Compare Evaluation
Sample Papers 
Gate Downloads 
Experts View

CEED 2013
CEED Exams
Eligibility
Application Forms
Important Dates
Contact Address
Examination Centres
CEED Sample Papers

Discuss GATE
GATE Forum
Exam Cities
Contact Details
Bank Details

Miscellaneous
Advertisment
Contact Us


Home » GATE Study Material » Electronics and Telecommunications » Radio Receiver Technology » Introduction to the superhet or superheterodyne radio receiver

Introduction to the superhet or superheterodyne radio receiver

Looking for GATE Preparation Material? Join & Get here now!

** Gate 2013 Question Papers.. ** CEED 2013 Results.. ** Gate 2013 Question Papers With Solutions.. ** GATE 2013 CUT-OFFs.. ** GATE 2013 Results.. **

Introduction to superhet or superheterodyne radio receiver

The superhet or superheterodyne radio receiver

- an introduction or tutorial about the basics of how the superhet or superheterodyne radio receiver works and how it can be used in radio communications systems.

The superhet radio or to give it its full name the superheterodyne receiver is one of the most popular forms of receiver in use today in a variety of applications from broadcast receivers to two way radio communications links as well as many mobile radio communications systems. First developed at the end of the First World War, with its invention credited to the American Edwin Armstrong, the use of the superhet has grown ever since the concept was first discovered.



Mixing

The idea of the superhet revolves around the process of mixing. Here RF mixers are used to multiply two signals together. (This is not the same as mixers used in audio desks where the signals are added together). When two signals are multiplied together the output is the product of the instantaneous level of the signal at one input and the instantaneous level of the signal at the other input. It is found that the output contains signals at frequencies other than the two input frequencies. New signals are seen at frequencies that are the sum and difference of the two input signals, i.e. if the two input frequencies are f1 and f2, then new signals are seen at frequencies of (f1+f2) and (f1-f2). To take an example, if two signals, one at a frequency of 5 MHz and another at a frequency of 6 MHz are mixed together then new signals at frequencies of 11 MHz and 1 MHz are generated.

The mixing process used in the superheterodyne radio

The signals generated by mixing or multiplying two signals together


Concept of the superheterodyne receiver

In the superhet or superheterodyne radio, the received signal enters one input of the mixed. A locally generated signal (local oscillator signal) is fed into the other. The result is that new signals are generated. These are applied to a fixed frequency intermediate frequency (IF) amplifier and filter. Any signals that are converted down and then fall within the passband of the IF amplifier will be amplified and passed on to the next stages. Those that fall outside the passband of the IF are rejected. Tuning is accomplished very simply by varying the frequency of the local oscillator. The advantage of this process is that very selective fixed frequency filters can be used and these far out perform any variable frequency ones. They are also normally at a lower frequency than the incoming signal and again this enables their performance to be better and less costly.

To see how this operates in reality take the example of two signals, one at 6 MHz and another at 6.1 MHz. Also take the example of an IF situated at 1 MHz. If the local oscillator is set to 5 MHz, then the two signals generated by the mixer as a result of the 6 MHz signal fall at 1 MHz and 11 MHz. Naturally the 11 MHz signal is rejected, but the one at 1 MHz passes through the IF stages. The signal at 6.1 MHz produces a signal at 1.1 MHz (and 11.1 MHz) and this falls outside bandwidth of the IF so the only signal to pass through the IF is that from the signal on 6 MHz.

The basic concept of the superhet radio

The basic concept of the superhet radio

If the local oscillator frequency is moved up by 0.1 MHz to 5.1 MHz then the signal at 6.1 MHz will give rise to a signal at 1 MHz and this will pass through the IF. The signal at 6 MHz will give rise to a signal of 0.9 MHz at the IF and will be rejected. In this way the receiver acts as a variable frequency filter, and tuning is accomplished.


Image responses

The basic concept of the superheterodyne receiver appears to be fine, but there is a problem. There are two signals that can enter the IF. With the local oscillator set to 5 MHz and with an IF it has already been seen that a signal at 6 MHz mixes with the local oscillator to produce a signal at 1 MHz that will pass through the IF filter. However if a signal at 4 MHz enters the mixer it produces two mix products, namely one at the sum frequency which is 10 MHz, whilst the difference frequency appears at 1 MHz. This would prove to be a problem because it is perfectly possible for two signals on completely different frequencies to enter the IF. The unwanted frequency is known as the image. Fortunately it is possible to place a tuned circuit before the mixer to prevent the signal entering the mixer, or more correctly reduce its level to acceptable value.

Fortunately this tuned circuit does not need to be very sharp. It does not need to reject signals on adjacent channels, but instead it needs to reject signals on the image frequency. These will be separated from the wanted channel by a frequency equal to twice the IF. In other words with an IG at 1 MHz, the image will be 2 MHz away from the wanted frequency.

Removing the image signal in a superheterodyne receiver

Using a tuned circuit to remove the image signal


Complete superheterodyne receiver

Having looked at the concepts behind the superheterodyne receiver it is helpful to look at a block diagram of a basic superhet. Signals enter the front end circuitry from the antenna. This contains the front end tuning for the superhet to remove the image signal and often includes an RF amplifier to amplify the signals before they enter the mixer. The level of this amplification is carefully calculated so that it does not overload the mixer when strong signals are present, but enables the signals to be amplified sufficiently to ensure a good signal to noise ratio is achieved.

The tuned and amplified signal then enters one port of the mixer. The local oscillator signal enters the other port. The local oscillator may consist of a variable frequency oscillator that can be tuned by altering the setting on a variable capacitor. Alternatively it may be a frequency synthesizer that will enable greater levels of stability and setting accuracy.

Once the signals leave the mixer they enter the IF stages. These stages contain most of the amplification in the receiver as well as the filtering that enables signals on one frequency to be separated from those on the next. Filters may consist simply of LC tuned transformers providing inter-stage coupling, or they may be much higher performance ceramic or even crystal filters, dependent upon what is required.

Once the signals have passed through the IF stages of the superheterodyne receiver, they need to be demodulated. Different demodulators are required for different types of transmission, and as a result some receivers may have a variety of demodulators that can be switched in to accommodate the different types of transmission that are to be encountered. The output from the demodulator is the recovered audio. This is passed into the audio stages where they are amplified and presented to the headphones or loudspeaker.

Block diagram of a superheterodyne radio

Block diagram of a basic superheterodyne receiver

The diagram above shows a very basic version of the superhet or superheterodyne receiver. Many sets these days are far more complicated. Some superhet radios have more than one frequency conversion, and other areas of additional circuitry to provide the required levels of performance. However the basic superheterodyne concept remains the same, using the idea of mixing the incoming signal with a locally generated oscillation to convert the signals to a new frequency.


Summary

While radio communications technology has advanced enormously since the first introduction of the superheterodyne radio receiver, it is still widely very widely used for many radio communicatiosn applications. It is widely used for mobile radio communications as well as many general two way radio communications applications. It also forms the basis of the great majority of broadcast radio receivers and is used in most specialised radio communications applications. In view of its many advantages, the superheterodyne radio receiver is likely to remain in widespread use for very many years to come.



Discussion Center

Discuss/
Query

Papers/
Syllabus

Feedback/
Suggestion

Yahoo
Groups

Sirfdosti
Groups

Contact
Us

MEMBERS LOGIN
  
Email ID:
Password:

  Forgot Password?
 New User? Register!

INTERVIEW EBOOK
Get 9,000+ Interview Questions & Answers in an eBook. Interview Question & Answer Guide
  • 9,000+ Interview Questions
  • All Questions Answered
  • 5 FREE Bonuses
  • Free Upgrades
GATE RESOURCES
 
  • Gate Books
  • Training Institutes
  • Gate FAQs
  • GATE BOOKS
     
  • Mechanical Engineeering Books
  • Robotics Automations Engineering Books
  • Civil Engineering Books
  • Chemical Engineering Books
  • Environmental Engineering Books
  • Electrical Engineering Books
  • Electronics Engineering Books
  • Information Technology Books
  • Software Engineering Books
  • GATE Preparation Books
  • Exciting Offers



    GATE Exam, Gate 2009, Gate Papers, Gate Preparation & Related Pages


    GATE Overview | GATE Eligibility | Structure Of GATE | GATE Training Institutes | Colleges Providing M.Tech/M.E. | GATE Score | GATE Results | PG with Scholarships | Article On GATE | GATE Forum | GATE 2009 Exclusive | GATE 2009 Syllabus | GATE Organizing Institute | Important Dates for GATE Exam | How to Apply for GATE | Discipline / Branch Codes | GATE Syllabus for Aerospace Engineering | GATE Syllabus for Agricultural Engineering | GATE Syllabus for Architecture and Planning | GATE Syllabus for Chemical Engineering | GATE Syllabus for Chemistry | GATE Syllabus for Civil Engineering | GATE Syllabus for Computer Science / IT | GATE Syllabus for Electronics and Communication Engineering | GATE Syllabus for Engineering Sciences | GATE Syllabus for Geology and Geophysics | GATE Syllabus for Instrumentation Engineering | GATE Syllabus for Life Sciences | GATE Syllabus for Mathematics | GATE Syllabus for Mechanical Engineering | GATE Syllabus for Metallurgical Engineering | GATE Syllabus for Mining Engineering | GATE Syllabus for Physics | GATE Syllabus for Production and Industrial Engineering | GATE Syllabus for Pharmaceutical Sciences | GATE Syllabus for Textile Engineering and Fibre Science | GATE Preparation | GATE Pattern | GATE Tips & Tricks | GATE Compare Evaluation | GATE Sample Papers | GATE Downloads | Experts View on GATE | CEED 2009 | CEED 2009 Exam | Eligibility for CEED Exam | Application forms of CEED Exam | Important Dates of CEED Exam | Contact Address for CEED Exam | CEED Examination Centres | CEED Sample Papers | Discuss GATE | GATE Forum of OneStopGATE.com | GATE Exam Cities | Contact Details for GATE | Bank Details for GATE | GATE Miscellaneous Info | GATE FAQs | Advertisement on GATE | Contact Us on OneStopGATE |
    Copyright © 2024. One Stop Gate.com. All rights reserved Testimonials |Link To Us |Sitemap |Privacy Policy | Terms and Conditions|About Us
    Our Portals : Academic Tutorials | Best eBooksworld | Beyond Stats | City Details | Interview Questions | India Job Forum | Excellent Mobiles | Free Bangalore | Give Me The Code | Gog Logo | Free Classifieds | Jobs Assist | Interview Questions | One Stop FAQs | One Stop GATE | One Stop GRE | One Stop IAS | One Stop MBA | One Stop SAP | One Stop Testing | Web Hosting | Quick Site Kit | Sirf Dosti | Source Codes World | Tasty Food | Tech Archive | Software Testing Interview Questions | Free Online Exams | The Galz | Top Masala | Vyom | Vyom eBooks | Vyom International | Vyom Links | Vyoms | Vyom World
    C Interview Questions | C++ Interview Questions | Send Free SMS | Placement Papers | SMS Jokes | Cool Forwards | Romantic Shayari