OneStopGate.Com
OnestopGate   OnestopGate
   Tuesday, November 19, 2024 Login  
OnestopGate
Home | Overview | Syllabus | Tutorials | FAQs | Downloads | Recommended Websites | Advertise | Payments | Contact Us | Forum
OneStopGate

GATE Resources
Gate Articles
Gate Books
Gate Colleges 
Gate Downloads 
Gate Faqs
Gate Jobs
Gate News 
Gate Sample Papers
Training Institutes

GATE Overview
Overview
GATE Eligibility
Structure Of GATE
GATE Coaching Centers
Colleges Providing M.Tech/M.E.
GATE Score
GATE Results
PG with Scholarships
Article On GATE
Admission Process For M.Tech/ MCP-PhD
GATE Topper 2012-13
GATE Forum




GATE 2025 Exclusive
Organizing Institute
Important Dates
How to Apply
Discipline Codes
GATE 2025 Exam Structure

GATE 2025 Syllabus
Aerospace Engg..
Agricultural Engg..
Architecture and Planning
Chemical Engg..
Chemistry
Civil Engg..
Computer Science / IT
Electronics & Communication Engg..
Electrical Engg..
Engineering Sciences
Geology and Geophysics
Instrumentation Engineering
Life Sciences
Mathematics
Mechanical Engg..
Metallurgical Engg..
Mining Engg..
Physics
Production & Industrial Engg..
Pharmaceutical Sciences
Textile Engineering and Fibre Science

GATE Study Material
Aerospace Engg..
Agricultural Engg..
Chemical Engg..
Chemistry
Civil Engg..
Computer Science / IT
Electronics & Communication Engg..
Electrical Engg..
Engineering Sciences
Instrumentation Engg..
Life Sciences
Mathematics
Mechanical Engg..
Physics
Pharmaceutical Sciences
Textile Engineering  and Fibre Science

GATE Preparation
GATE Pattern
GATE Tips N Tricks
Compare Evaluation
Sample Papers 
Gate Downloads 
Experts View

CEED 2013
CEED Exams
Eligibility
Application Forms
Important Dates
Contact Address
Examination Centres
CEED Sample Papers

Discuss GATE
GATE Forum
Exam Cities
Contact Details
Bank Details

Miscellaneous
Advertisment
Contact Us


Home » GATE Study Material » Electronics and Telecommunications » Radio Receiver Technology » Quartz crystal band pass filters

Quartz crystal band pass filters

Looking for GATE Preparation Material? Join & Get here now!

** Gate 2013 Question Papers.. ** CEED 2013 Results.. ** Gate 2013 Question Papers With Solutions.. ** GATE 2013 CUT-OFFs.. ** GATE 2013 Results.. **

Quartz crystal band pass filters

Quartz crystal band pass filters

- summary, overview or tutorial about the basics of the different types of crystal filter that can be used in radio communications receivers including the single crystal filter, half lattice crystal filter, and the ladder crystal filter.

Crystal filters are widely used in many applications including radio receivers as well as many other radio communications applications. The very high level of Q makes the quartz crystal resonators they use makes them ideal for use as the primary band pass RF filter in high performance radio communications receivers. As a result of this there are a number of circuits that have been used to provide the required level of selectivity and performance over the years. These include the single crystal filter, the half lattice crystal filter and the ladder filter.



Single crystal filter

The simplest crystal filter employs a single crystal. This type of RF filter was developed in the 1930s and was used in early receivers dating from before the 1960s but is rarely used today. Although it employs the very high Q of the crystal, its response is asymmetric and it is too narrow for most applications, having a bandwidth of a hundred Hz or less.

In the circuit there is a variable capacitor that is used to compensate for the parasitic capacitance in the crystal. This capacitor was normally included as a front panel control.

Single quartz crystal filter

Diagram of filter using a single quartz crystal


Half lattice crystal filter

This form of band pass RF filter provided a significant improvement in performance over the single. In this configuration the parasitic capacitances of each of the crystals cancel each other out and enable the circuit to operate satisfactorily. By adopting a slightly different frequency for the crystals, a wider bandwidth is obtained. However the slope response outside the required pass band falls away quickly, enabling high levels of out of band rejection to be obtained. Typically the parallel resonant frequency of one crystal is designed to be equal to the series resonant frequency of the other.

Despite the fact that the half lattice crystal filter can offer a much flatter in-band response there is still some ripple. This results from the fact that the two crystals have different resonant frequencies. The response has a small peak at either side of the centre frequency and a small dip in the middle. As a rough rule of thumb it is found that the 3 dB bandwidth of the RF filter is about 1.5 times the frequency difference between the two resonant frequencies. It is also found that for optimum performance the matching of the filter is very important. To achieve this, matching resistors are often placed on the input and output. If the filter is not properly matched then it is found that there will be more in-band ripple and the ultimate rejection may not be as good.

Half lattice band pass crystal filter

Diagram of half lattice crystal filter

A two pole filter (i.e. one with two crystals) is not normally adequate to meet many requirements. The shape factor can be greatly improved by adding further sections. Typically ultimate rejections of 70 dB and more are required in a receiver. As a rough guide a two pole filter will generally give a rejection of around 20 dB; a four pole filter, 50 dB; a six pole filter, 70 dB; and an eight pole one 90 dB.


Crystal ladder filter

For many years the half lattice filter was possibly the most popular format used for crystal filters. More recently the ladder topology has gained considerable acceptance. In this form of crystal pass band filter all the resonators have the same frequency, and the inter-resonator coupling is provided by the capacitors placed between the resonators with the other termination connected to earth.

four pole ladder crystal band pass filter

Four pole ladder crystal filter


Summary

Crystal filters are widely used in many radio communications receiver applications. Here these filters are able to provide very high levels of performance and at a cost which is very reasonable for the performance that is given. These RF filters may be made in a variety of formats according to the applications and the performance needed. While these RF filters can be made from discrete components, ready manufactured crystal filters are normally bought, either off the shelf, of made to a given specification.



Discussion Center

Discuss/
Query

Papers/
Syllabus

Feedback/
Suggestion

Yahoo
Groups

Sirfdosti
Groups

Contact
Us

MEMBERS LOGIN
  
Email ID:
Password:

  Forgot Password?
 New User? Register!

INTERVIEW EBOOK
Get 9,000+ Interview Questions & Answers in an eBook. Interview Question & Answer Guide
  • 9,000+ Interview Questions
  • All Questions Answered
  • 5 FREE Bonuses
  • Free Upgrades
GATE RESOURCES
 
  • Gate Books
  • Training Institutes
  • Gate FAQs
  • GATE BOOKS
     
  • Mechanical Engineeering Books
  • Robotics Automations Engineering Books
  • Civil Engineering Books
  • Chemical Engineering Books
  • Environmental Engineering Books
  • Electrical Engineering Books
  • Electronics Engineering Books
  • Information Technology Books
  • Software Engineering Books
  • GATE Preparation Books
  • Exciting Offers



    GATE Exam, Gate 2009, Gate Papers, Gate Preparation & Related Pages


    GATE Overview | GATE Eligibility | Structure Of GATE | GATE Training Institutes | Colleges Providing M.Tech/M.E. | GATE Score | GATE Results | PG with Scholarships | Article On GATE | GATE Forum | GATE 2009 Exclusive | GATE 2009 Syllabus | GATE Organizing Institute | Important Dates for GATE Exam | How to Apply for GATE | Discipline / Branch Codes | GATE Syllabus for Aerospace Engineering | GATE Syllabus for Agricultural Engineering | GATE Syllabus for Architecture and Planning | GATE Syllabus for Chemical Engineering | GATE Syllabus for Chemistry | GATE Syllabus for Civil Engineering | GATE Syllabus for Computer Science / IT | GATE Syllabus for Electronics and Communication Engineering | GATE Syllabus for Engineering Sciences | GATE Syllabus for Geology and Geophysics | GATE Syllabus for Instrumentation Engineering | GATE Syllabus for Life Sciences | GATE Syllabus for Mathematics | GATE Syllabus for Mechanical Engineering | GATE Syllabus for Metallurgical Engineering | GATE Syllabus for Mining Engineering | GATE Syllabus for Physics | GATE Syllabus for Production and Industrial Engineering | GATE Syllabus for Pharmaceutical Sciences | GATE Syllabus for Textile Engineering and Fibre Science | GATE Preparation | GATE Pattern | GATE Tips & Tricks | GATE Compare Evaluation | GATE Sample Papers | GATE Downloads | Experts View on GATE | CEED 2009 | CEED 2009 Exam | Eligibility for CEED Exam | Application forms of CEED Exam | Important Dates of CEED Exam | Contact Address for CEED Exam | CEED Examination Centres | CEED Sample Papers | Discuss GATE | GATE Forum of OneStopGATE.com | GATE Exam Cities | Contact Details for GATE | Bank Details for GATE | GATE Miscellaneous Info | GATE FAQs | Advertisement on GATE | Contact Us on OneStopGATE |
    Copyright © 2024. One Stop Gate.com. All rights reserved Testimonials |Link To Us |Sitemap |Privacy Policy | Terms and Conditions|About Us
    Our Portals : Academic Tutorials | Best eBooksworld | Beyond Stats | City Details | Interview Questions | India Job Forum | Excellent Mobiles | Free Bangalore | Give Me The Code | Gog Logo | Free Classifieds | Jobs Assist | Interview Questions | One Stop FAQs | One Stop GATE | One Stop GRE | One Stop IAS | One Stop MBA | One Stop SAP | One Stop Testing | Web Hosting | Quick Site Kit | Sirf Dosti | Source Codes World | Tasty Food | Tech Archive | Software Testing Interview Questions | Free Online Exams | The Galz | Top Masala | Vyom | Vyom eBooks | Vyom International | Vyom Links | Vyoms | Vyom World
    C Interview Questions | C++ Interview Questions | Send Free SMS | Placement Papers | SMS Jokes | Cool Forwards | Romantic Shayari