OneStopGate.Com
OnestopGate   OnestopGate
   Saturday, December 21, 2024 Login  
OnestopGate
Home | Overview | Syllabus | Tutorials | FAQs | Downloads | Recommended Websites | Advertise | Payments | Contact Us | Forum
OneStopGate

GATE Resources
Gate Articles
Gate Books
Gate Colleges 
Gate Downloads 
Gate Faqs
Gate Jobs
Gate News 
Gate Sample Papers
Training Institutes

GATE Overview
Overview
GATE Eligibility
Structure Of GATE
GATE Coaching Centers
Colleges Providing M.Tech/M.E.
GATE Score
GATE Results
PG with Scholarships
Article On GATE
Admission Process For M.Tech/ MCP-PhD
GATE Topper 2012-13
GATE Forum




GATE 2025 Exclusive
Organizing Institute
Important Dates
How to Apply
Discipline Codes
GATE 2025 Exam Structure

GATE 2025 Syllabus
Aerospace Engg..
Agricultural Engg..
Architecture and Planning
Chemical Engg..
Chemistry
Civil Engg..
Computer Science / IT
Electronics & Communication Engg..
Electrical Engg..
Engineering Sciences
Geology and Geophysics
Instrumentation Engineering
Life Sciences
Mathematics
Mechanical Engg..
Metallurgical Engg..
Mining Engg..
Physics
Production & Industrial Engg..
Pharmaceutical Sciences
Textile Engineering and Fibre Science

GATE Study Material
Aerospace Engg..
Agricultural Engg..
Chemical Engg..
Chemistry
Civil Engg..
Computer Science / IT
Electronics & Communication Engg..
Electrical Engg..
Engineering Sciences
Instrumentation Engg..
Life Sciences
Mathematics
Mechanical Engg..
Physics
Pharmaceutical Sciences
Textile Engineering  and Fibre Science

GATE Preparation
GATE Pattern
GATE Tips N Tricks
Compare Evaluation
Sample Papers 
Gate Downloads 
Experts View

CEED 2013
CEED Exams
Eligibility
Application Forms
Important Dates
Contact Address
Examination Centres
CEED Sample Papers

Discuss GATE
GATE Forum
Exam Cities
Contact Details
Bank Details

Miscellaneous
Advertisment
Contact Us


Home » GATE Study Material » Electronics and Telecommunications » Radio Receiver Technology » SINAD

SINAD

Looking for GATE Preparation Material? Join & Get here now!

** Gate 2013 Question Papers.. ** CEED 2013 Results.. ** Gate 2013 Question Papers With Solutions.. ** GATE 2013 CUT-OFFs.. ** GATE 2013 Results.. **

SINAD

SINAD and SINAD measurements for radio receivers

- an overview or tutorial of the basics of the SINAD measurement and how SINAD may be used in specifying the sensitivity performance of many radio receivers and radio communications systems.

One of the measurements that can be made to assess and specify the sensitivity performance of a radio receiver is SINAD. It is very useful in many applications including many two way radio communications systems, mobile radio communications systems, and particularly those at VHF and above.

While SINAD may not used as widely as the signal to noise ratio, or noise figure it is nevertheless used commonly and can be found in the specifications of many radio receivers used in fixed and mobile radio communications systems.. SINAD is often used in conjunction with FM receivers, but it can also be used for AM and SSB quite easily.


As with any radio receiver, the design of the RF amplifier is key to its sensitivity performance. A poorly performing RF amplifier will degrade the performance of the whole radio receiver. However a high performance low noise RF amplifier will enable the overall set to provide a high level of sensitivity. Accordingly time should be focussed in the design of the RF amplifier in order that it should reach the required level of performance.


What is SINAD?

SINAD is a measurement that can be used for any radio communication device to look at the degradation of the signal by unwanted or extraneous signals including noise and distortion. However the SINAD measurement is most widely used for measuring and specifying the sensitivity of a radio receiver.

The actual definition of SINAD is quite straightforward. It can be summarised as the ratio of the total signal power level (Signal + Noise + Distortion) to unwanted signal power (Noise + Distortion). Accordingly, the higher the figure for SINAD, the better the quality of the audio signal.

The SINAD figure is expressed in decibels (dB) and can be determined from the simple formula:

SINAD = 10Log ( SND / ND )

where:
SND = combined Signal + Noise + Distortion power level
ND = combined Noise + Distortion power level

It is worth noting that SINAD is a power ratio and not a voltage ratio for this calculation.


Making SINAD measurements

To make the measurement a signal modulated with an audio tone is entered into the radio receiver. A frequency of 1 kHz is taken as the standard as it falls in the middle of the audio bandwidth. A measurement of the whole signal, i.e. the signal plus noise plus distortion is made. As the frequency of the tone is known, the regenerated audio is passed through a notch filter to remove the tone. The remaining noise and distortion is then measured.

Although it is most common to measure the electrical output at the radio receiver audio output terminals, another approach that is not as widely used, is to pass the signal into the loudspeaker and then use a transducer connected to SINAD meter to convert the audio back into an electrical signal. This will ensure that any distortion included by the speaker is incorporated, and it may overcome problems with gaining access to the speaker connections in certain circumstances where this may not be possible.

Obtaining the figures for the signal plus noise plus distortion and the noise plus distortion it is then possible to calculate the value of SINAD for the radio receiver of other piece of equipment.

SINAD measurement set-up

The set up used for making SINAD measurements

While the measurements for SINAD can be made using individual items of test equipment, a number of SINAD meters are made commercially. These SINAD meters incorporate all the required circuitry and can be connected directly to radio receivers to make the measurements. Accordingly SINAD meters are a particularly convenient method of making these measurements.


Filter for SINAD measurements

The notch filter that is required for SINAD measurements to be made has an effect on the measurement. In an ideal world the filter would be infinitely sharp a notch out only the modulating tone. However in the real world the filter will have a finite bandwidth. As its bandwidth increases, so it will remove noise and distortion as well as the tone. However as the distortion products will typically result from the second and third harmonics of the tone, the filter will not have an effect on this element of the reading. Nevertheless it may still have an effect on the noise levels.

In view of this problem some standards set down specifications or guidelines for the filter used in the SINAD measurement. ETSI (European Telecommunications Standards Institute) defines a notch filter (ETR 027). With the standard tone frequency of 1 kHz, it states that a filter used for SINAD measurements shall be such that the output the 1000 Hz tone shall be attenuated by at least 40 dB and at 2000 Hz the attenuation shall not exceed 0.6 dB. The filter characteristic shall be flat within 0.6 dB over the ranges 20 Hz to 500 Hz and 2000 Hz to 4000 Hz. In the absence of modulation the filter shall not cause more than 1 dB attenuation of the total noise power of the audio frequency output of the receiver under test.

In addition to the filter performance another critical area of a SINAD measurement is the measurement of the output signal power levels. These have to be a true power measurements that accommodate the different form factors of the variety of waveforms, i.e. sine wave for the 1 kHz tone and its harmonics, but the noise will be random and have a different form factor.


Applications of SINAD measurements

SINAD measurements give an assessment of the signal quality from a receiver under a number of conditions. As such SINAD measurements can be used for assessing a number of elements of receiver performance.

Receiver sensitivity: The most common use of the SINAD measurement is to assess the sensitivity performance of a radio receiver. To achieve this the sensitivity can be assessed by determining the RF input level at the antenna that is required to achieve a given figure of SINAD. Normally a SINAD value of 12 dB is taken as this corresponds to a distortion factor of 25%, and a modulating tone of 1 kHz is used. It is also necessary to determine other conditions. For AM it is necessary to specify the depth of modulation and for FM the level of deviation is required. For FM analogue systems ETSI specifies the use of a deviation level of 12.5% of the channel spacing

A typical specification might be that a receiver has a sensitivity of 0.25 uV [microvolts] for a 12 dB SINAD. Obviously the lower the input voltage needed to achieve the given level of SINAD, the better the receiver performance.

Adjacent channel rejection: This parameter is a measure of the ability of the receiver to reject signals on a nearby channel. As the adjacent channel performance degrades, so the levels of noise and extraneous signals will increase, thereby degrading the SINAD performance.

An initial measurement of SINAD is made at a given level and this is known as the reference sensitivity. The RF input level of the signal for the SINAD measurement is then increased by 3 dB at the receiver antenna input. A second source or signal with modulated with a 400 Hz tone is added with its frequency set to an adjacent channel or at a specific offset from the carrier source used for the basic SINAD measurement. It will be found that the interferer will cause the 400 Hz tone to appear in the audio of the receiver as its level is increased. This will be seen as a degradation in the SINAD as the 400 Hz tone will pass through the SINAD meter notch filter.

With the measurement system set up, the interferer signal level is raised until the SINAD value is degraded to the original value obtained at the reference sensitivity. Then the ratio of the interfering level to the wanted signal is the adjacent channel rejection.

Receiver blocking: SINAD can be used to form the basis of a receiver blocking measurement. As with other similar measurements a reference SINAD sensitivity level is found. The level of the SINAD signal is increased by 3 dB at the antenna. An un-modulated off channel signal is then added and its level raised until the receiver desensitises to an extent whereby the reference SINAD level is reached.


Summary

SINAD is a particularly useful measurement format that can be used to determine the performance of a radio receiver under a variety of conditions. Although SINAD is primarily used to specify the basic sensitivity performance of many radio receivers, it can be used for other parameters as well. Additionally it is chiefly used for FM systems, but its use is equally applicable to AM and SSB, and it finds applications for many fixed or mobile radio communications systems including two way radio communications links. It may also be used for digital radio systems as well, although this is not common practice as a measurement known as bit error rate (BER) is more widely used.

The overall figure for SINAD will be chiefly dependent upon the performance of the RF amplifier in the receiver. A low noise RF amplifier will enable the set as a whole to provide a good SINAD performance.



Discussion Center

Discuss/
Query

Papers/
Syllabus

Feedback/
Suggestion

Yahoo
Groups

Sirfdosti
Groups

Contact
Us

MEMBERS LOGIN
  
Email ID:
Password:

  Forgot Password?
 New User? Register!

INTERVIEW EBOOK
Get 9,000+ Interview Questions & Answers in an eBook. Interview Question & Answer Guide
  • 9,000+ Interview Questions
  • All Questions Answered
  • 5 FREE Bonuses
  • Free Upgrades
GATE RESOURCES
 
  • Gate Books
  • Training Institutes
  • Gate FAQs
  • GATE BOOKS
     
  • Mechanical Engineeering Books
  • Robotics Automations Engineering Books
  • Civil Engineering Books
  • Chemical Engineering Books
  • Environmental Engineering Books
  • Electrical Engineering Books
  • Electronics Engineering Books
  • Information Technology Books
  • Software Engineering Books
  • GATE Preparation Books
  • Exciting Offers



    GATE Exam, Gate 2009, Gate Papers, Gate Preparation & Related Pages


    GATE Overview | GATE Eligibility | Structure Of GATE | GATE Training Institutes | Colleges Providing M.Tech/M.E. | GATE Score | GATE Results | PG with Scholarships | Article On GATE | GATE Forum | GATE 2009 Exclusive | GATE 2009 Syllabus | GATE Organizing Institute | Important Dates for GATE Exam | How to Apply for GATE | Discipline / Branch Codes | GATE Syllabus for Aerospace Engineering | GATE Syllabus for Agricultural Engineering | GATE Syllabus for Architecture and Planning | GATE Syllabus for Chemical Engineering | GATE Syllabus for Chemistry | GATE Syllabus for Civil Engineering | GATE Syllabus for Computer Science / IT | GATE Syllabus for Electronics and Communication Engineering | GATE Syllabus for Engineering Sciences | GATE Syllabus for Geology and Geophysics | GATE Syllabus for Instrumentation Engineering | GATE Syllabus for Life Sciences | GATE Syllabus for Mathematics | GATE Syllabus for Mechanical Engineering | GATE Syllabus for Metallurgical Engineering | GATE Syllabus for Mining Engineering | GATE Syllabus for Physics | GATE Syllabus for Production and Industrial Engineering | GATE Syllabus for Pharmaceutical Sciences | GATE Syllabus for Textile Engineering and Fibre Science | GATE Preparation | GATE Pattern | GATE Tips & Tricks | GATE Compare Evaluation | GATE Sample Papers | GATE Downloads | Experts View on GATE | CEED 2009 | CEED 2009 Exam | Eligibility for CEED Exam | Application forms of CEED Exam | Important Dates of CEED Exam | Contact Address for CEED Exam | CEED Examination Centres | CEED Sample Papers | Discuss GATE | GATE Forum of OneStopGATE.com | GATE Exam Cities | Contact Details for GATE | Bank Details for GATE | GATE Miscellaneous Info | GATE FAQs | Advertisement on GATE | Contact Us on OneStopGATE |
    Copyright © 2024. One Stop Gate.com. All rights reserved Testimonials |Link To Us |Sitemap |Privacy Policy | Terms and Conditions|About Us
    Our Portals : Academic Tutorials | Best eBooksworld | Beyond Stats | City Details | Interview Questions | India Job Forum | Excellent Mobiles | Free Bangalore | Give Me The Code | Gog Logo | Free Classifieds | Jobs Assist | Interview Questions | One Stop FAQs | One Stop GATE | One Stop GRE | One Stop IAS | One Stop MBA | One Stop SAP | One Stop Testing | Web Hosting | Quick Site Kit | Sirf Dosti | Source Codes World | Tasty Food | Tech Archive | Software Testing Interview Questions | Free Online Exams | The Galz | Top Masala | Vyom | Vyom eBooks | Vyom International | Vyom Links | Vyoms | Vyom World
    C Interview Questions | C++ Interview Questions | Send Free SMS | Placement Papers | SMS Jokes | Cool Forwards | Romantic Shayari