OneStopGate.Com
OnestopGate   OnestopGate
   Saturday, December 21, 2024 Login  
OnestopGate
Home | Overview | Syllabus | Tutorials | FAQs | Downloads | Recommended Websites | Advertise | Payments | Contact Us | Forum
OneStopGate

GATE Resources
Gate Articles
Gate Books
Gate Colleges 
Gate Downloads 
Gate Faqs
Gate Jobs
Gate News 
Gate Sample Papers
Training Institutes

GATE Overview
Overview
GATE Eligibility
Structure Of GATE
GATE Coaching Centers
Colleges Providing M.Tech/M.E.
GATE Score
GATE Results
PG with Scholarships
Article On GATE
Admission Process For M.Tech/ MCP-PhD
GATE Topper 2012-13
GATE Forum




GATE 2025 Exclusive
Organizing Institute
Important Dates
How to Apply
Discipline Codes
GATE 2025 Exam Structure

GATE 2025 Syllabus
Aerospace Engg..
Agricultural Engg..
Architecture and Planning
Chemical Engg..
Chemistry
Civil Engg..
Computer Science / IT
Electronics & Communication Engg..
Electrical Engg..
Engineering Sciences
Geology and Geophysics
Instrumentation Engineering
Life Sciences
Mathematics
Mechanical Engg..
Metallurgical Engg..
Mining Engg..
Physics
Production & Industrial Engg..
Pharmaceutical Sciences
Textile Engineering and Fibre Science

GATE Study Material
Aerospace Engg..
Agricultural Engg..
Chemical Engg..
Chemistry
Civil Engg..
Computer Science / IT
Electronics & Communication Engg..
Electrical Engg..
Engineering Sciences
Instrumentation Engg..
Life Sciences
Mathematics
Mechanical Engg..
Physics
Pharmaceutical Sciences
Textile Engineering  and Fibre Science

GATE Preparation
GATE Pattern
GATE Tips N Tricks
Compare Evaluation
Sample Papers 
Gate Downloads 
Experts View

CEED 2013
CEED Exams
Eligibility
Application Forms
Important Dates
Contact Address
Examination Centres
CEED Sample Papers

Discuss GATE
GATE Forum
Exam Cities
Contact Details
Bank Details

Miscellaneous
Advertisment
Contact Us


Home » GATE Study Material » Electronics and Telecommunications » Radio Signal Propagation » Radio propagation prediction using solar indices

Radio propagation prediction using solar indices

Looking for GATE Preparation Material? Join & Get here now!

** Gate 2013 Question Papers.. ** CEED 2013 Results.. ** Gate 2013 Question Papers With Solutions.. ** GATE 2013 CUT-OFFs.. ** GATE 2013 Results.. **

Radio propagation prediction using solar indices

Radio Propagation Prediction using Solar Indices

- an overview, article, tutorial about the basics of radio propagation prediction using solar indices. This is applicable for two way radio communication, mobile radio communications, radio broadcasting, maritime mobile communications and for radio amateurs.

Ionospheric radio propagation is notoriously changeable. However for many applications radio propagation prediction is necessary. For example for broadcasting as well as for users of two way radio communications links that utilise the HF bands as well as mobile radio communications, maritime radio communications, and many other point to point radio users, a knowledge of the propagation patterns that will be in existence at a particular time are almost essential. In this way radio communications users who require propagation via the ionosphere can choose the best times and frequencies in which to establish their radio communications.



Radio propagation prediction

There are many indicators that enable the HF radio propagation conditions to be predicted. However it is indicators of the level of solar radiation and geomagnetic activity that give the best clues to the possible state of radio communications propagation conditions via the ionosphere. The main indicators are the solar flux and the geomagnetic indices. Using these it is possible to manually deduce what conditions may be like. However there several packages of radio propagation prediction software that are available. These take the various indices into account along with the position on the globe, time of day, season, and the position in the sunspot cycle.



Solar flux

One of the major indicators of solar activity used for radio propagation prediction is known as the solar flux and it has a major impact on radio communications propagation conditions. It provides an indication of the level of radiation that is being received from the Sun. This solar index is measured by detecting the level of radio noise emitted at a frequency of 2800 MHz (10.7 cms). The index is quoted in terms of Solar Flux Units (SFU). An SFU has the units 10^-22 Watts per metre^2 per Hz.

The level of solar radiation varies around the globe. Even when correction factors have been applied it is not easy to be able to provide a consist series of figures. To overcome this, the standard is taken as the reading from the Penticton Radio Observatory in British Columbia, Canada. Thus these figures are of great interest for ionospheric radio propagation prediction.

The level of ionising radiation that is received from the Sun is approximately proportional to the Solar Flux. There is a statistical relationship rather than a direct one because the level of radio noise received at 2800 MHz is about a million times less in intensity than that of the radiation that creates the ionisation in the ionosphere. However the Solar Flux provides a good first order approximation, particularly for the F region that is responsible for most long distance ionospheric radio communications propagation. The best correlation is with levels of the Smoothed Sunspot Number (SSN).

It is possible to relate the daily sunspot number to the Solar Flux. A number of equations are available but the one given below is straightforward and sufficiently accurate for most purposes:

Solar flux (SFU) = 73.4 + 0.62R

Where R is the daily sunspot or Wolf number.

A slightly more accurate, although more complicated equation indicates the relationship between the two values is not totally linear.

Solar flux (SFU) = 63.7 + 0.728 R + 0.00089 R^2

The values of Solar Flux vary over a wide range. At their lowest (typically during the periods of the sunspot minima) they may be as low as 50 but rise to maximum values of around 300 (around the times of the sunspot maxima).

As the values of Solar Flux provide an indication of the level of ionisation in the ionosphere. In turn this gives an indication of what the Maximum Usable Frequency (MUF) for radio communications may be. Low values of Solar Flux indicate that MUF figures may be low. High values of Solar Flux indicate that the MUF may be higher. It should be remembered that there must be several consecutive days of sustained high solar radiation with the absence of solar disturbances for high MUFs for HF band radio communications.



Geomagnetic indices

Apart from the Solar Flux, another important influence on the ionosphere and hence radio propagation prediction is the level of geomagnetic activity. While the geomagnetic activity is a measure of the state of the Earth's magnetic field, this in turn is influenced by the Sun. To indicate the state of Geomagnetic activity, there are two indices that are used that are related to each other:

  • K index

  • a Index

Although different, both these indices give indications of the severity of magnetic fluctuations, and hence the level of disturbance to the ionosphere.

K Index:   The K index is a three hourly measurement of the variation of the Earth's magnetic field compared to what are "quiet day" conditions. The measurement is made using a magnetometer. This indicates the variation of the magnetic flux in nanoTeslas. This reading is then converted to the K index. The relationship is quasi-logarithmic, i.e. an almost directly proportional on a logarithmic scale..

The K index is measured at many different places around the world. The magnetic field varies around the globe and accordingly a different value for K is created at each measurement station. Owing to the fact that the magnetic field varies in different ways around the globe dependent upon the way in which the magnetosphere is affected, it is not possible to have a simple relationship between one station and a global K index. Instead the individual K indices are averaged around the globe to give what is termed the Kp or planetary K index.

Kp Index:   The planetary or Kp index has values that range between 0 and 9. The values of the index give a good indication of geomagnetic activity: values between 0 and 1 indicate quiet magnetic conditions and would give rise to virtually no degradation in HF band radio communications conditions. Values between 2 and 4 provide an indication of unsettled magnetic conditions that indicate the possibility of some degradation on the HF bands for radio communications. A value of 5 signifies a minor storm and 6 a larger one. Values through to 9 indicate steadily worsening conditions with 9 representing a major storm that is likely to result in a blackout in HF ionospheric propagation for several hours.

A Index;   The A index is a linear measure of the Earth's field. As a result of this, its values extend over a much wider range. It is derived from the K index by scaling it to give a linear value which is termed the "a" index. This is then averaged over the period of a day to give the A index. Like the K index, values are averaged around the globe to give the planetary Ap index.

Values for the A index range up to 100 during a storm and may rise as far as 400 in a severe geomagnetic storm.

 

Relationship between "K" and "a" Indices

 

Ap Index Kp Index Comments
0 0 Quiet
4 1 Quiet
7 2 Unsettled
15 3 Unsettled
27 4 Active
48 5 Minor storm
80 6 Major storm
132 7 Severe storm
208 8 Very major storm
400 9 Very major storm
 

 

Geomagnetic and ionospheric storms are very closely related. However they are separate effects. Geomagnetic storms relate to disturbances of the Earth's magnetic field, and ionospheric storms relate to disturbances of the ionosphere. However it is found that geomagnetic storms often lead to ionospheric ones, but not on every occasion.



Interpreting the figures

The easiest way to use these figures for radio propagation prediction is to enter them into radio propagation prediction software. This will provide the most accurate prediction of what might be happening. These programmes will take into account factors such as signal paths because some will cross the poles and they will be far more affected by storms that will those across the equator.

However it is still possible to gain a good insight into what the figures mean in terms of radio propagation for all forms of radio communications using ionospheric propagation purely by assessing them mentally. Obviously high levels of solar flux are needed for good radio communications propagation. Generally the higher the flux the better the conditions will be. However the levels need to be maintained for some days. In this way the overall level of ionisation in the F2 layer will build up. Typically values of 150 and more will ensure good HF propagation conditions, although levels of 200 and more will ensure they are at their peak. In this way the maximum useable frequencies will rise, thereby providing good conditions for HF band radio communications.

The level of geomagnetic activity has an adverse affect, depressing the maximum useable frequencies. The higher the level of activity and hence the higher the Ap and Kp indices the greater the depression of the MUFs. The actual amount of depression will depend not only on the severity of the storm, but also its duration.



Summary

Having an understanding of the solar indices is of great help when using HF radio communications, be it two way radio communications, mobile radio communications, radio broadcasting or any form of point to point radio communications using ionospheric or HF propagation. It helps with radio propagation prediction and enables a quick assessment to be made of the possibility of communications being disrupted. Also having a general understanding enables any errors in entering data into the programmes to be quickly noted and corrected. In this way it enables the best to be made of the radio communications equipment and the most reliable communications to be obtained.



Discussion Center

Discuss/
Query

Papers/
Syllabus

Feedback/
Suggestion

Yahoo
Groups

Sirfdosti
Groups

Contact
Us

MEMBERS LOGIN
  
Email ID:
Password:

  Forgot Password?
 New User? Register!

INTERVIEW EBOOK
Get 9,000+ Interview Questions & Answers in an eBook. Interview Question & Answer Guide
  • 9,000+ Interview Questions
  • All Questions Answered
  • 5 FREE Bonuses
  • Free Upgrades
GATE RESOURCES
 
  • Gate Books
  • Training Institutes
  • Gate FAQs
  • GATE BOOKS
     
  • Mechanical Engineeering Books
  • Robotics Automations Engineering Books
  • Civil Engineering Books
  • Chemical Engineering Books
  • Environmental Engineering Books
  • Electrical Engineering Books
  • Electronics Engineering Books
  • Information Technology Books
  • Software Engineering Books
  • GATE Preparation Books
  • Exciting Offers



    GATE Exam, Gate 2009, Gate Papers, Gate Preparation & Related Pages


    GATE Overview | GATE Eligibility | Structure Of GATE | GATE Training Institutes | Colleges Providing M.Tech/M.E. | GATE Score | GATE Results | PG with Scholarships | Article On GATE | GATE Forum | GATE 2009 Exclusive | GATE 2009 Syllabus | GATE Organizing Institute | Important Dates for GATE Exam | How to Apply for GATE | Discipline / Branch Codes | GATE Syllabus for Aerospace Engineering | GATE Syllabus for Agricultural Engineering | GATE Syllabus for Architecture and Planning | GATE Syllabus for Chemical Engineering | GATE Syllabus for Chemistry | GATE Syllabus for Civil Engineering | GATE Syllabus for Computer Science / IT | GATE Syllabus for Electronics and Communication Engineering | GATE Syllabus for Engineering Sciences | GATE Syllabus for Geology and Geophysics | GATE Syllabus for Instrumentation Engineering | GATE Syllabus for Life Sciences | GATE Syllabus for Mathematics | GATE Syllabus for Mechanical Engineering | GATE Syllabus for Metallurgical Engineering | GATE Syllabus for Mining Engineering | GATE Syllabus for Physics | GATE Syllabus for Production and Industrial Engineering | GATE Syllabus for Pharmaceutical Sciences | GATE Syllabus for Textile Engineering and Fibre Science | GATE Preparation | GATE Pattern | GATE Tips & Tricks | GATE Compare Evaluation | GATE Sample Papers | GATE Downloads | Experts View on GATE | CEED 2009 | CEED 2009 Exam | Eligibility for CEED Exam | Application forms of CEED Exam | Important Dates of CEED Exam | Contact Address for CEED Exam | CEED Examination Centres | CEED Sample Papers | Discuss GATE | GATE Forum of OneStopGATE.com | GATE Exam Cities | Contact Details for GATE | Bank Details for GATE | GATE Miscellaneous Info | GATE FAQs | Advertisement on GATE | Contact Us on OneStopGATE |
    Copyright © 2024. One Stop Gate.com. All rights reserved Testimonials |Link To Us |Sitemap |Privacy Policy | Terms and Conditions|About Us
    Our Portals : Academic Tutorials | Best eBooksworld | Beyond Stats | City Details | Interview Questions | India Job Forum | Excellent Mobiles | Free Bangalore | Give Me The Code | Gog Logo | Free Classifieds | Jobs Assist | Interview Questions | One Stop FAQs | One Stop GATE | One Stop GRE | One Stop IAS | One Stop MBA | One Stop SAP | One Stop Testing | Web Hosting | Quick Site Kit | Sirf Dosti | Source Codes World | Tasty Food | Tech Archive | Software Testing Interview Questions | Free Online Exams | The Galz | Top Masala | Vyom | Vyom eBooks | Vyom International | Vyom Links | Vyoms | Vyom World
    C Interview Questions | C++ Interview Questions | Send Free SMS | Placement Papers | SMS Jokes | Cool Forwards | Romantic Shayari