OneStopGate.Com
OnestopGate   OnestopGate
   Tuesday, November 19, 2024 Login  
OnestopGate
Home | Overview | Syllabus | Tutorials | FAQs | Downloads | Recommended Websites | Advertise | Payments | Contact Us | Forum
OneStopGate

GATE Resources
Gate Articles
Gate Books
Gate Colleges 
Gate Downloads 
Gate Faqs
Gate Jobs
Gate News 
Gate Sample Papers
Training Institutes

GATE Overview
Overview
GATE Eligibility
Structure Of GATE
GATE Coaching Centers
Colleges Providing M.Tech/M.E.
GATE Score
GATE Results
PG with Scholarships
Article On GATE
Admission Process For M.Tech/ MCP-PhD
GATE Topper 2012-13
GATE Forum




GATE 2025 Exclusive
Organizing Institute
Important Dates
How to Apply
Discipline Codes
GATE 2025 Exam Structure

GATE 2025 Syllabus
Aerospace Engg..
Agricultural Engg..
Architecture and Planning
Chemical Engg..
Chemistry
Civil Engg..
Computer Science / IT
Electronics & Communication Engg..
Electrical Engg..
Engineering Sciences
Geology and Geophysics
Instrumentation Engineering
Life Sciences
Mathematics
Mechanical Engg..
Metallurgical Engg..
Mining Engg..
Physics
Production & Industrial Engg..
Pharmaceutical Sciences
Textile Engineering and Fibre Science

GATE Study Material
Aerospace Engg..
Agricultural Engg..
Chemical Engg..
Chemistry
Civil Engg..
Computer Science / IT
Electronics & Communication Engg..
Electrical Engg..
Engineering Sciences
Instrumentation Engg..
Life Sciences
Mathematics
Mechanical Engg..
Physics
Pharmaceutical Sciences
Textile Engineering  and Fibre Science

GATE Preparation
GATE Pattern
GATE Tips N Tricks
Compare Evaluation
Sample Papers 
Gate Downloads 
Experts View

CEED 2013
CEED Exams
Eligibility
Application Forms
Important Dates
Contact Address
Examination Centres
CEED Sample Papers

Discuss GATE
GATE Forum
Exam Cities
Contact Details
Bank Details

Miscellaneous
Advertisment
Contact Us


Home » GATE Study Material » Electronics and Telecommunications » Satellite Technology » Satellite design and construction

Satellite design and construction

Looking for GATE Preparation Material? Join & Get here now!

** Gate 2013 Question Papers.. ** CEED 2013 Results.. ** Gate 2013 Question Papers With Solutions.. ** GATE 2013 CUT-OFFs.. ** GATE 2013 Results.. **

Satellite design and construction

Satellite design and construction

- the elements that need to be considered for satellite design and construction, and satellite systems design and other factors relating to the design of a satellite.

 

Satellite design and construction is a particularly specialised business. The requirements for satellites are very stringent and satellites must be capable of operating in extreme conditions whilst still maintaining the highest standards of reliability because they cannot be retrieved for maintenance or repair. Apart from the general factors relating to satellite design, the circuitry required for their operation such as the transmitters and receivers, satellites also contain a number of systems used for what is called station keeping. All of these functions, whether for performing the primary role of the satellite, or for ensuring that it reliably maintains its position and function are all important and must be included in the design of the satellite.



Satellite position maintenance

Satellites need to be kept in the correct position. Although they may be placed in exactly the correct orbit after they are launched, the variations in the Earth's gravitational field and other factors may cause them to drift out of their correct position. As a result it is necessary to reposition them periodically.

Small thrusters are used to perform this operation. Often they consist of canisters of a gas which when released with a catalyst gives a form of rocket propulsion to move the satellite back on station. Often the service life of a satellite is determined by the amount of fuel for repositioning the satellite rather than the reliability of the electronics.

The other problem with a satellite is that its attitude will change. This is of great importance because directive antennas or cameras are often used, and the satellite needs to be orientated in the correct direction for them. The basic method of gaining the correct orientation is to use the thrusters. However the attitude will change comparatively quickly. The most common method to overcome this is to use the gyroscopic effect. Sometimes a large flywheel may be made to spin inside the satellite. This can be inefficient in its use of the weight of the satellite. To overcome this other cylindrical satellites actually rotate a portion of the body, often an inner cylindrical section so that the antennas mounted on the outer section do not revolve.

Satellite power

Electrical power is also required by the satellite for its electronic circuitry and other electrical systems. Although the power requirements for some satellites may be relatively modest, this is certainly not the case for satellites such as direct broadcast (DBS) or satellite television broadcasting satellites. Although they do not transmit the same levels of power that are used for terrestrial broadcasting, they still consume considerable amounts of power.

The power is supplied by the large arrays of photo or solar cells. Some cylindrical satellites have them positioned around the outer area on the cylinder so that some part of the body is always exposed to sunlight. Others have large extending panels that are orientated to collect the maximum amount of light. Today these panels are capable of producing the many kilowatts of power required for the high power output stages used in many transponders.

Batteries are also needed for the periods when the satellite is in darkness. These need to charged by the solar cells so that when the satellite passes out of the sunlight it can still remain operational. This naturally places an additional burden on the solar cells because they need to be able to power not only the satellite itself, but also charge the batteries. This may double the power they have to supply during periods of sunlight.


Satellite antennas

The antennas used on satellites are particularly important. They are the only means through which communication can take place with the ground. For geostationary satellites directional antennas are generally used. These are used because power consumption on the satellite has to be minimised wherever possible. Directional antennas provide gain and enable the best use to be made of the available transmitted power. Additionally they enable the signals from the earth to be received with the best signal to noise ratio. In view of the long path lengths required for geostationary satellites, there is a considerable path loss and the antenna gain is used to improve the received signal strength. It also helps reduce the reception of solar and cosmic noise that would further degrade the received signal. In a geostationary orbit the earth subtends only 18 degrees of arc. Any power not falling into this area is wasted.

As a result, parabolic reflector or "dish" antennas are widely used. Horn antennas are also popular and in some cases phased arrays may be employed, especially where coverage of a specific area of the globe is required. However the use of directional antennas does mean that the orientation of the antenna is crucial, and any perturbation of the alignment of the satellite can have a major effect on its operation, both in reception and transmission.

The situation is different for low earth orbit or LEO satellites. These satellites are not in geostationary orbit and they move across the sky. Additionally they may need to be received by several users at any time and this means that they cannot use directive antennas. Additionally the earth subtends around half the celestial sphere and as a result users may be separated by angles ranging from zero to almost 180 degrees. Fortunately the satellites are much closer to the earth and path losses are very significantly less, reducing the need to high gain antennas.


Environmental

The environment in which satellites operate is particularly harsh. Combined with the need for exceedingly high levels of reliability resulting from the near impossible task of repair, this means that every detail of the design and operation under these conditions must be carefully considered.

In the first instance the temperatures range over very wide extremes. The surfaces exposed to the sun are heated by solar radiation and will rise to very high temperatures, whereas the other side that is not heated will be exceedingly cold. Only conduction will give any heating effect under these circumstances. The temperature of the whole of the satellite will also fall when it is in darkness.

There are a number of other effects that must be considered. Solar radiation itself has an effect on some materials, causing them to degrade. Notice must also be taken of meteorites. Very small ones cause the surfaces to be eroded slightly, but larger ones may penetrate the body of the satellite causing significant damage. To overcome this satellites are protected by specially designed outer layers. These consist of sheets of metal which are slightly separated giving a cushioning effect when any meteorites impact on the satellite. Cosmic particles also degrade the performance of satellites. Particularly during solar flares the increase in solar particle flow can degrade solar cells, reducing their efficiency.


Ground stations

Ground stations also need an effective antenna system. For communication with satellites in geostationary orbit the antenna remains fixed, except if there is a need to change to another satellite. Accordingly parabolic reflectors are often used. This can be seen from the number of satellite TV antennas that are in use. These are a form of parabolic reflector. This type of antenna is widely sued for example with direct broadcast satellite TV. The antennas seen on the sides of houses are almost exclusively parabolic reflectors. However it is possible to use other types such as arrays of Yagi antennas. Here they are stacked (one on top of the other) and bayed (side bay side) to give additional gain.

For some low earth orbit satellites the ground station antenna systems are designed to be able to track the satellite in azimuth and elevation. This is typically achieved by automatically tracking the satellite as it moves across the sky. This is normally achieved by taking a signal level output from the receiver. By ensuring that it is maintained at its peak level the satellite will be tracked. Many low earth orbit satellites are required for systems such as positioning or even telephone style communications. Here directional antennas are not used as the user will not want to re-orientate the antenna all the time. Instead almost non-directional antennas are used and the transmitter powers and receiver sensitivities designed to give a sufficient level of signal to noise ratio. This is the case for GPS where several satellites need to be received at the same time. Accordingly receivers are designed to accommodate the very low signal levels.


Satellite design summary

Satellites are in everyday use around the globe. Not only are functions such as GPS widely used, but so are many other forms of satellite including communications satellites, weather satellites, geophysical satellites and many forms of satellites. Without them, our lives would be very different, and we have come to rely on them. Accordingly their design must be made to be very reliable as they are not easy to repair, even if it is viable - which is normally not the case, and they operate under extremely harsh conditions. Accordingly the design of a satellite is critical. The satellite design specifications need to be totally correct, and the basic satellite design needs to take all aspects into consideration, making any satellite design project particularly exacting. However if correct, the satellite will normally be able to give many years of service and pay for the large investment in the satellite design and construction.



Discussion Center

Discuss/
Query

Papers/
Syllabus

Feedback/
Suggestion

Yahoo
Groups

Sirfdosti
Groups

Contact
Us

MEMBERS LOGIN
  
Email ID:
Password:

  Forgot Password?
 New User? Register!

INTERVIEW EBOOK
Get 9,000+ Interview Questions & Answers in an eBook. Interview Question & Answer Guide
  • 9,000+ Interview Questions
  • All Questions Answered
  • 5 FREE Bonuses
  • Free Upgrades
GATE RESOURCES
 
  • Gate Books
  • Training Institutes
  • Gate FAQs
  • GATE BOOKS
     
  • Mechanical Engineeering Books
  • Robotics Automations Engineering Books
  • Civil Engineering Books
  • Chemical Engineering Books
  • Environmental Engineering Books
  • Electrical Engineering Books
  • Electronics Engineering Books
  • Information Technology Books
  • Software Engineering Books
  • GATE Preparation Books
  • Exciting Offers



    GATE Exam, Gate 2009, Gate Papers, Gate Preparation & Related Pages


    GATE Overview | GATE Eligibility | Structure Of GATE | GATE Training Institutes | Colleges Providing M.Tech/M.E. | GATE Score | GATE Results | PG with Scholarships | Article On GATE | GATE Forum | GATE 2009 Exclusive | GATE 2009 Syllabus | GATE Organizing Institute | Important Dates for GATE Exam | How to Apply for GATE | Discipline / Branch Codes | GATE Syllabus for Aerospace Engineering | GATE Syllabus for Agricultural Engineering | GATE Syllabus for Architecture and Planning | GATE Syllabus for Chemical Engineering | GATE Syllabus for Chemistry | GATE Syllabus for Civil Engineering | GATE Syllabus for Computer Science / IT | GATE Syllabus for Electronics and Communication Engineering | GATE Syllabus for Engineering Sciences | GATE Syllabus for Geology and Geophysics | GATE Syllabus for Instrumentation Engineering | GATE Syllabus for Life Sciences | GATE Syllabus for Mathematics | GATE Syllabus for Mechanical Engineering | GATE Syllabus for Metallurgical Engineering | GATE Syllabus for Mining Engineering | GATE Syllabus for Physics | GATE Syllabus for Production and Industrial Engineering | GATE Syllabus for Pharmaceutical Sciences | GATE Syllabus for Textile Engineering and Fibre Science | GATE Preparation | GATE Pattern | GATE Tips & Tricks | GATE Compare Evaluation | GATE Sample Papers | GATE Downloads | Experts View on GATE | CEED 2009 | CEED 2009 Exam | Eligibility for CEED Exam | Application forms of CEED Exam | Important Dates of CEED Exam | Contact Address for CEED Exam | CEED Examination Centres | CEED Sample Papers | Discuss GATE | GATE Forum of OneStopGATE.com | GATE Exam Cities | Contact Details for GATE | Bank Details for GATE | GATE Miscellaneous Info | GATE FAQs | Advertisement on GATE | Contact Us on OneStopGATE |
    Copyright © 2024. One Stop Gate.com. All rights reserved Testimonials |Link To Us |Sitemap |Privacy Policy | Terms and Conditions|About Us
    Our Portals : Academic Tutorials | Best eBooksworld | Beyond Stats | City Details | Interview Questions | India Job Forum | Excellent Mobiles | Free Bangalore | Give Me The Code | Gog Logo | Free Classifieds | Jobs Assist | Interview Questions | One Stop FAQs | One Stop GATE | One Stop GRE | One Stop IAS | One Stop MBA | One Stop SAP | One Stop Testing | Web Hosting | Quick Site Kit | Sirf Dosti | Source Codes World | Tasty Food | Tech Archive | Software Testing Interview Questions | Free Online Exams | The Galz | Top Masala | Vyom | Vyom eBooks | Vyom International | Vyom Links | Vyoms | Vyom World
    C Interview Questions | C++ Interview Questions | Send Free SMS | Placement Papers | SMS Jokes | Cool Forwards | Romantic Shayari