OneStopGate.Com
OnestopGate   OnestopGate
   Tuesday, November 19, 2024 Login  
OnestopGate
Home | Overview | Syllabus | Tutorials | FAQs | Downloads | Recommended Websites | Advertise | Payments | Contact Us | Forum
OneStopGate

GATE Resources
Gate Articles
Gate Books
Gate Colleges 
Gate Downloads 
Gate Faqs
Gate Jobs
Gate News 
Gate Sample Papers
Training Institutes

GATE Overview
Overview
GATE Eligibility
Structure Of GATE
GATE Coaching Centers
Colleges Providing M.Tech/M.E.
GATE Score
GATE Results
PG with Scholarships
Article On GATE
Admission Process For M.Tech/ MCP-PhD
GATE Topper 2012-13
GATE Forum




GATE 2025 Exclusive
Organizing Institute
Important Dates
How to Apply
Discipline Codes
GATE 2025 Exam Structure

GATE 2025 Syllabus
Aerospace Engg..
Agricultural Engg..
Architecture and Planning
Chemical Engg..
Chemistry
Civil Engg..
Computer Science / IT
Electronics & Communication Engg..
Electrical Engg..
Engineering Sciences
Geology and Geophysics
Instrumentation Engineering
Life Sciences
Mathematics
Mechanical Engg..
Metallurgical Engg..
Mining Engg..
Physics
Production & Industrial Engg..
Pharmaceutical Sciences
Textile Engineering and Fibre Science

GATE Study Material
Aerospace Engg..
Agricultural Engg..
Chemical Engg..
Chemistry
Civil Engg..
Computer Science / IT
Electronics & Communication Engg..
Electrical Engg..
Engineering Sciences
Instrumentation Engg..
Life Sciences
Mathematics
Mechanical Engg..
Physics
Pharmaceutical Sciences
Textile Engineering  and Fibre Science

GATE Preparation
GATE Pattern
GATE Tips N Tricks
Compare Evaluation
Sample Papers 
Gate Downloads 
Experts View

CEED 2013
CEED Exams
Eligibility
Application Forms
Important Dates
Contact Address
Examination Centres
CEED Sample Papers

Discuss GATE
GATE Forum
Exam Cities
Contact Details
Bank Details

Miscellaneous
Advertisment
Contact Us


Home » GATE Study Material » Electronics and Telecommunications » Telecommunications and Networks » Basics of RS-232 serial data transmission standard

Basics of RS-232 serial data transmission standard

Looking for GATE Preparation Material? Join & Get here now!

** Gate 2013 Question Papers.. ** CEED 2013 Results.. ** Gate 2013 Question Papers With Solutions.. ** GATE 2013 CUT-OFFs.. ** GATE 2013 Results.. **

Basics of RS-232 serial data transmission standard

RS-232 tutorial

- an overview or tutorial about the RS232 communication standard that is widely used for the transmission of serial data

The RS-232 communications standard has been in use for very many years and is one of the most widely used standards for serial data communications. There are several different specifications that are used to define RS-232: RS-232C, RS-232D; V24; V28 and V10, but they are all very similar and can be used to interface to each other. Additionally, RS232 communication can be used in either an asynchronous mode, which is the most common, or a synchronous mode.


Originally the RS232 communication specification was devised in 1962 when the need to be able to transmit data along a variety of types of line started to grow. The telephone companies saw the need to introduce some standards. As a result the Electrical Industries Association in the U.S.A. created a standard for serial data transfer or communication known as RS232C. It defines the electrical characteristics for transmission of data between a Data Terminal Equipment (DTE) and the Data Communications Equipment (DCE). Normally the data communications equipment is the modem (modulator/demodulator) which that encodes the data into a form that can be transferred along the telephone line. A Data Terminal Equipment could be a computer.

Since it was first introduced there have been a number of updates to the RS-232 standard. These have included EIA-232 (Electronic Industries Alliance) and later EIA/TIA-232 (Telecommunications Industry Association).

The original RS-232 specification was developed in the USA and sponsored by organisations there. On a more international scale the International Telecommunications Union (ITU) developed a standard known as ITU v.24. However this is often just written V24. This standard is totally compatible with RS232, and its aim was to enable manufacturers to conform to global standards and thereby allow products that would work in all countries around the world.

The success of the RS232 standard has meant that it is now used for many more types of equipment. As a result many lines defined in the specification are rarely used. This means that care has to be taken when connecting any new equipment or defining which lines are to be used in a new design.

Interface Basics


The interface is intended to operate over distances of up to 15 metres. This is because any modem is likely to be near the terminal. Data rates are also limited. The maximum for RS-232C is 19.2 k baud or bits per second although slower rates are often used. In theory it is possible to use any baud rate, but there area number of standard transmission speeds used.

Common Data Transmission Rates

50
75
110
150
300
600
1200
2400
4800
9600
19200
38400
76800

Note: speeds up to 19200 bits per second are normally used. Above this noise that is picked up, especially over long cable runs can introduce data errors.

Connections


The RS-232C specification does not include a description of the connector to be used. However, the most common type found is the 25 pin D-type connector.

RS232 signal levels


The voltage levels are one of the main items in the specification. For RS232 data signals a voltage of between -3V and -25V represents a logic 1. The logic 0 is represented by a voltage of between +3V and +25V. Control signals are in the "ON" state if their voltage is between +3V and +25V and "OFF" if they are negative, i.e. between -3V and -25V.

The data is sent serially on RS232, each bit is sent one after the next because there is only one data line in each direction. This mode of data transmission also requires that the receiver knows when the actual data bits are arriving so that it can synchronise itself to the incoming data. To achieve this a logic 0 is sent as a start bit for the synchronisation. This is followed by the data itself and there are normally seven or eight bits. The receiver obviously has to know how many data bits to expect, and there are often small dual in line switches either on the back of the equipment or inside it to set this information.

Data on RS232 is normally sent using ASCII (American Standard Code for Information Interchange). However other codes including the Murray Code or EBCDIC (Extended Binary Coded Decimal Interchange Code) can be used equally well.

After the data itself a parity bit is sent. Again this requires setting because it is optional and it can be even or odd parity. This is used to check the correctness of the received data and it can indicate whether the data has an odd or even number of logic ones. Unlike many systems these days there is no facility for error correction.

Finally a stop bit is sent. This is normally one bit long and is used to signify the end of a particular byte. Sometimes two stop bits are required and again this is an option that can often be set on the equipment.

RS232 data transmission is normally asynchronous. However transmit and receive speeds must obviously be the same. A certain degree of tolerance is allowed. Once the start bit is sent the receiver will sample the centre of each bit to see the level. Within each data word the synchronisation must not differ by more than half a bit length otherwise the incorrect data will be seen. Fortunately this is very easy to achieve with today's accurate bit or baud rate generators.

Lines and their usage


Their are four types of line defined in the RS232 specification. They are Data, Control, Timing and Ground. Not all of them are required all the time. It is possible to set up a very simple communication using very few lines. When looking at the lines and their functions it is necessary to remember that they are defined for a connection between a modem (the data set or communications equipment) and a terminal or computer (data terminal equipment) in mind. All the lines have directions, and when used in this way a one to one cable operates correctly.

The most obvious lines are the data lines. There are two of these, one for data travelling in each direction. Transmit data is carried on pin 2 and the receive data is carried on line three.

The most basic of the control circuits is Data Carrier Detected (DCD). This shows when the modem has detected a carrier on the telephone line and a connection appears to have been made. It produces a high, which is maintained until the connection is lost.

Data Terminal Ready (DTR) and Data Set Ready (DSR) are the main control circuits. They convey the main information between the terminal and modem. When the terminal is ready to start handling data it flags this on the DTR line. If the modem is also ready then it returns its signal on the DSR line. These circuits are mainly used for telephone circuits. After a connection has been made the modem will be connected to the line by using DTR. This connection will remain until the terminal is switched off line when the DTR line is dropped. The modem will detect this and release the telephone line.

Sometimes pin 20 is not assigned to DTR. Instead another signal named, Connect Data Set To Line (CDSTL) is used. This is virtually the same as DTR, but differs in that DTR merely enables the modem to be switched onto the telephone line. CDSTL commands the modem to switch, despite anything else it may be doing.

A further two circuits, Request To Send (RTS) and Clear To Send (CTS) are also used. This pair of circuits are used together. The terminal equipment will flag that it has data to send. The modem will then return the CTS signal to give the all clear after a short delay.

This signalling is used particularly when switched carriers are used. It means that the carrier is only present on the line when there is data to send. It finds its uses when one central modem is servicing several others at remote locations.

Secondary lines


There are two types of lines that are specified in the RS-232 specification. There are the primary channels that are normally used, and operate at the normal or higher data rates. However, there is also provision for a secondary channel for providing control information. If it is used it will usually send data at a much slower rate than the primary channel.

As the secondary lines are rarely used or even implemented on equipment, manufacturers often use these connector pins for other purposes. In view of this it is worth checking that the lines are not being used for other purposes before considering using them. When the secondary system is in use, the handshaking signals operate in the same way as for the primary circuit.

Grounding


The ground connections are also important. There are two. First the protective ground ensures that both equipments are at the same earth potential. This is very useful when there is a possibility that either equipment is not earthed. The signal ground is used as the return for the digital signals travelling along the data link. It is important that large currents that are not part of the signalling do not flow along this line otherwise data errors may occur.

Summary


The RS-232 specification is still widely used. Although faster specifications exist, it is likely to remain in use for many years to come. One of the reasons for this is the fact that it is found on most of today's personal computers. Although the parallel "LPT" ports are used almost universally for printers, it still used for many other purposes, including connecting the computer to a modem.



Discussion Center

Discuss/
Query

Papers/
Syllabus

Feedback/
Suggestion

Yahoo
Groups

Sirfdosti
Groups

Contact
Us

MEMBERS LOGIN
  
Email ID:
Password:

  Forgot Password?
 New User? Register!

INTERVIEW EBOOK
Get 9,000+ Interview Questions & Answers in an eBook. Interview Question & Answer Guide
  • 9,000+ Interview Questions
  • All Questions Answered
  • 5 FREE Bonuses
  • Free Upgrades
GATE RESOURCES
 
  • Gate Books
  • Training Institutes
  • Gate FAQs
  • GATE BOOKS
     
  • Mechanical Engineeering Books
  • Robotics Automations Engineering Books
  • Civil Engineering Books
  • Chemical Engineering Books
  • Environmental Engineering Books
  • Electrical Engineering Books
  • Electronics Engineering Books
  • Information Technology Books
  • Software Engineering Books
  • GATE Preparation Books
  • Exciting Offers



    GATE Exam, Gate 2009, Gate Papers, Gate Preparation & Related Pages


    GATE Overview | GATE Eligibility | Structure Of GATE | GATE Training Institutes | Colleges Providing M.Tech/M.E. | GATE Score | GATE Results | PG with Scholarships | Article On GATE | GATE Forum | GATE 2009 Exclusive | GATE 2009 Syllabus | GATE Organizing Institute | Important Dates for GATE Exam | How to Apply for GATE | Discipline / Branch Codes | GATE Syllabus for Aerospace Engineering | GATE Syllabus for Agricultural Engineering | GATE Syllabus for Architecture and Planning | GATE Syllabus for Chemical Engineering | GATE Syllabus for Chemistry | GATE Syllabus for Civil Engineering | GATE Syllabus for Computer Science / IT | GATE Syllabus for Electronics and Communication Engineering | GATE Syllabus for Engineering Sciences | GATE Syllabus for Geology and Geophysics | GATE Syllabus for Instrumentation Engineering | GATE Syllabus for Life Sciences | GATE Syllabus for Mathematics | GATE Syllabus for Mechanical Engineering | GATE Syllabus for Metallurgical Engineering | GATE Syllabus for Mining Engineering | GATE Syllabus for Physics | GATE Syllabus for Production and Industrial Engineering | GATE Syllabus for Pharmaceutical Sciences | GATE Syllabus for Textile Engineering and Fibre Science | GATE Preparation | GATE Pattern | GATE Tips & Tricks | GATE Compare Evaluation | GATE Sample Papers | GATE Downloads | Experts View on GATE | CEED 2009 | CEED 2009 Exam | Eligibility for CEED Exam | Application forms of CEED Exam | Important Dates of CEED Exam | Contact Address for CEED Exam | CEED Examination Centres | CEED Sample Papers | Discuss GATE | GATE Forum of OneStopGATE.com | GATE Exam Cities | Contact Details for GATE | Bank Details for GATE | GATE Miscellaneous Info | GATE FAQs | Advertisement on GATE | Contact Us on OneStopGATE |
    Copyright © 2024. One Stop Gate.com. All rights reserved Testimonials |Link To Us |Sitemap |Privacy Policy | Terms and Conditions|About Us
    Our Portals : Academic Tutorials | Best eBooksworld | Beyond Stats | City Details | Interview Questions | India Job Forum | Excellent Mobiles | Free Bangalore | Give Me The Code | Gog Logo | Free Classifieds | Jobs Assist | Interview Questions | One Stop FAQs | One Stop GATE | One Stop GRE | One Stop IAS | One Stop MBA | One Stop SAP | One Stop Testing | Web Hosting | Quick Site Kit | Sirf Dosti | Source Codes World | Tasty Food | Tech Archive | Software Testing Interview Questions | Free Online Exams | The Galz | Top Masala | Vyom | Vyom eBooks | Vyom International | Vyom Links | Vyoms | Vyom World
    C Interview Questions | C++ Interview Questions | Send Free SMS | Placement Papers | SMS Jokes | Cool Forwards | Romantic Shayari