OneStopGate.Com
OnestopGate   OnestopGate
   Monday, January 20, 2025 Login  
OnestopGate
Home | Overview | Syllabus | Tutorials | FAQs | Downloads | Recommended Websites | Advertise | Payments | Contact Us | Forum
OneStopGate

GATE Resources
Gate Articles
Gate Books
Gate Colleges 
Gate Downloads 
Gate Faqs
Gate Jobs
Gate News 
Gate Sample Papers
Training Institutes

GATE Overview
Overview
GATE Eligibility
Structure Of GATE
GATE Coaching Centers
Colleges Providing M.Tech/M.E.
GATE Score
GATE Results
PG with Scholarships
Article On GATE
Admission Process For M.Tech/ MCP-PhD
GATE Topper 2012-13
GATE Forum




GATE 2026 Exclusive
Organizing Institute
Important Dates
How to Apply
Discipline Codes
GATE 2026 Exam Structure

GATE 2026 Syllabus
Aerospace Engg..
Agricultural Engg..
Architecture and Planning
Chemical Engg..
Chemistry
Civil Engg..
Computer Science / IT
Electronics & Communication Engg..
Electrical Engg..
Engineering Sciences
Geology and Geophysics
Instrumentation Engineering
Life Sciences
Mathematics
Mechanical Engg..
Metallurgical Engg..
Mining Engg..
Physics
Production & Industrial Engg..
Pharmaceutical Sciences
Textile Engineering and Fibre Science

GATE Study Material
Aerospace Engg..
Agricultural Engg..
Chemical Engg..
Chemistry
Civil Engg..
Computer Science / IT
Electronics & Communication Engg..
Electrical Engg..
Engineering Sciences
Instrumentation Engg..
Life Sciences
Mathematics
Mechanical Engg..
Physics
Pharmaceutical Sciences
Textile Engineering  and Fibre Science

GATE Preparation
GATE Pattern
GATE Tips N Tricks
Compare Evaluation
Sample Papers 
Gate Downloads 
Experts View

CEED 2013
CEED Exams
Eligibility
Application Forms
Important Dates
Contact Address
Examination Centres
CEED Sample Papers

Discuss GATE
GATE Forum
Exam Cities
Contact Details
Bank Details

Miscellaneous
Advertisment
Contact Us


Home » GATE Study Material » Electronics and Telecommunications » Telecommunications and Networks » Optical fibre - the keystone of fibre optics technology

Optical fibre - the keystone of fibre optics technology

Looking for GATE Preparation Material? Join & Get here now!

** Gate 2013 Question Papers.. ** CEED 2013 Results.. ** Gate 2013 Question Papers With Solutions.. ** GATE 2013 CUT-OFFs.. ** GATE 2013 Results.. **

Optical fibre - the keystone of fibre optics technology

Optical fibre tutorial

- an overview or tutorial covering fibre optic cabling - the construction of the fibre optic cables, how they work, their applications and specifications.

In recent years, optical fibres, and fibre optic cabling has fallen in cost, making it fall within the economic reach of many more telecommunications and data networking applications. As a result fibre optics are now in widespread use, and form the backbone of most telecommunications networks and many local area data networks.


While there are many components used in building up a fibre optic link, the fibre optic cabling is obviously the key element.

Optical fibre construction

Fibre optic technology relies on the fact that it is possible to send a light beam along a thin fibre suitably constructed. A fibre optic cable consists of a glass or silica core. The core of the optical fibre is surrounded by a similar material, i.e. glass or silica, called the cladding, that has a refractive index that is slightly lower than that of the core. It is found that even when the cladding has a slightly higher refractive index, the light passing down the core undergoes total internal reflection, and it is thereby contained within the core of the optical fibre.

The Outside the cladding there is placed a plastic jacket. This is used to provide protection to the optical fibre itself. In addition to this, optical fibres are usually grouped together in bundles and these are protected by an overall outer sheath. This not only provides further protection but also serves to keep the optical fibres together.

Optical fibre types

There is a variety of different types of fibre optic cable that can be used, and there are a number of ways in which types may be differentiated. There are two major categories:

  • Step index fibre optic cabling

  • Graded index fibre optic cabling

The step index cable refers to cable in which there is a step change in the refractive index between the core and the cladding. This type is the more commonly used. The other type, as indicated by the name, changes more gradually over the diameter of the fibre. Using this type of cable, the light is refracted towards the centre of the cable.

Optical fibres or optical fibers can also be split into single mode fibre, and multimode fibre. Mention of both single mode fiber and multi-mode fiber is often seen in the literature.

Single mode fiber This form of optical fibre is the type that is virtually exclusively used these days. It is found that if the diameter of the optical fibre is reduced to a few wavelengths of light, then the light can only propagate in a straight line and does not bounce from side to side of the fibre. As the light can only travel in this single mode, this type of cable is called a single mode fibre. Typically single mode fibre core are around eight to ten microns in diameter, much smaller than a hair.

Single mode fiber does not suffer from multi-modal dispersion and this means that it has a much wider bandwidth. The main limitation to the bandwidth is what is termed chromatic dispersion where different colours, i.e. Wavelengths propagate at different speeds. Chromatic dispersion of the optical fibre cable occurs within the centre of the fibre itself. It is found that it is negative for short wavelengths and changes to become positive at longer wavelengths. As a result there is a wavelength for single mode fiber where the dispersions is zero. This generally occurs at a wavelength of around 1310 nm and this is the reason why this wavelength is widely used.

The disadvantage of single mode fibre is that it requires high tolerance to be manufactured and this increases its cost. Against this the fact that it offers superior performance, especially for long runs means that much development of single mode fiber has been undertaken to reduce the costs.

Multimode fiber This form of fibre has a greater diameter than single mode fibre, being typically around 50 microns in diameter, and this makes them easier to manufacture than the single mode fibres.

Multimode optical fiber has a number of advantages. As it has a wider diameter than single mode fibre it can capture light from the light source and pass it to the receiver with a high level of efficiency. As a result it can be used with low cost light emitting diodes. In addition to this the greater diameter means that high precision connectors are not required. However this form of optical fibre cabling suffers from a higher level of loss than single mode fibre and in view of this its use is more costly than might be expected at first sight. It also suffers from multi-mode modal dispersion and this severely limits the usable bandwidth. As a result it has not been widely used since the mid 1980s. Single mode fiber cable is the preferred type.

Attenuation within an optical fibre

Although fibre optic cables offer a far superior performance to that which can be achieved with other forms of cable, they nevertheless suffer from some levels of attenuation. This is caused by several effects:

  • Loss associated with the impurities There will always be some level of impurity in the core of the optical fibre. This will cause some absorption of the light within the fibre. One major impurity is water that remains in the fibre.

  • Loss associated with the cladding When light reflects off the interface between the cladding and the core, the light will actually travel into the core a small distance before being reflected back. This process causes a small but significant level of loss and is one of the main contributors to the overall attenuation of a signal along an fibre optic cable.

  • Loss associated with the wavelength It is found that the level of signal attenuation in the optical fibre depends the wavelength used. The level increases at certain wavelengths as a result of certain impurities.

Despite the fact that attenuation is an issue, it is nevertheless possible to transmit data along single mode fibres for considerable distances. Lines carrying data rates up to 50 Gbps are able to cover distances of 100 km without the need for amplification.

Materials used for optical fibres

There are two main types of material used for optical fibres. These are glass and plastic. They offer widely different characteristics and therefore fibres made from the two different substances find uses in very different applications.

Optical fibre sizes

One of the major ways of specifying optical fibre cables is by the diameters of the inner core and the external cladding. As may be expected there are industry standards for these and this helps in reducing the variety of fittings needed for connectors, splices and the tools needed for fitting.

The standard for most optical fibres is 125 microns (um) for the cladding and 245 microns (um) for the outer protective coating. Multimode optical fibres have core sizes of either 50 or 62.5 microns whereas the standards for single mode fibres is approximately 8 to 10 microns.

When specifying optical fibre cables, the diameters usually form the major part of the cable specification. A multimode fibre with a core diameter of 50 microns and a cladding diameter of 125 microns would be referred to as a 50/125 fibre.

In addition to the specification of the diameter, other parameters such as the loss, etc are also required, but these elements do not form part of the cable type in the same way as the diameter.



Discussion Center

Discuss/
Query

Papers/
Syllabus

Feedback/
Suggestion

Yahoo
Groups

Sirfdosti
Groups

Contact
Us

MEMBERS LOGIN
  
Email ID:
Password:

  Forgot Password?
 New User? Register!

INTERVIEW EBOOK
Get 9,000+ Interview Questions & Answers in an eBook. Interview Question & Answer Guide
  • 9,000+ Interview Questions
  • All Questions Answered
  • 5 FREE Bonuses
  • Free Upgrades
GATE RESOURCES
 
  • Gate Books
  • Training Institutes
  • Gate FAQs
  • GATE BOOKS
     
  • Mechanical Engineeering Books
  • Robotics Automations Engineering Books
  • Civil Engineering Books
  • Chemical Engineering Books
  • Environmental Engineering Books
  • Electrical Engineering Books
  • Electronics Engineering Books
  • Information Technology Books
  • Software Engineering Books
  • GATE Preparation Books
  • Exciting Offers



    GATE Exam, Gate 2009, Gate Papers, Gate Preparation & Related Pages


    GATE Overview | GATE Eligibility | Structure Of GATE | GATE Training Institutes | Colleges Providing M.Tech/M.E. | GATE Score | GATE Results | PG with Scholarships | Article On GATE | GATE Forum | GATE 2009 Exclusive | GATE 2009 Syllabus | GATE Organizing Institute | Important Dates for GATE Exam | How to Apply for GATE | Discipline / Branch Codes | GATE Syllabus for Aerospace Engineering | GATE Syllabus for Agricultural Engineering | GATE Syllabus for Architecture and Planning | GATE Syllabus for Chemical Engineering | GATE Syllabus for Chemistry | GATE Syllabus for Civil Engineering | GATE Syllabus for Computer Science / IT | GATE Syllabus for Electronics and Communication Engineering | GATE Syllabus for Engineering Sciences | GATE Syllabus for Geology and Geophysics | GATE Syllabus for Instrumentation Engineering | GATE Syllabus for Life Sciences | GATE Syllabus for Mathematics | GATE Syllabus for Mechanical Engineering | GATE Syllabus for Metallurgical Engineering | GATE Syllabus for Mining Engineering | GATE Syllabus for Physics | GATE Syllabus for Production and Industrial Engineering | GATE Syllabus for Pharmaceutical Sciences | GATE Syllabus for Textile Engineering and Fibre Science | GATE Preparation | GATE Pattern | GATE Tips & Tricks | GATE Compare Evaluation | GATE Sample Papers | GATE Downloads | Experts View on GATE | CEED 2009 | CEED 2009 Exam | Eligibility for CEED Exam | Application forms of CEED Exam | Important Dates of CEED Exam | Contact Address for CEED Exam | CEED Examination Centres | CEED Sample Papers | Discuss GATE | GATE Forum of OneStopGATE.com | GATE Exam Cities | Contact Details for GATE | Bank Details for GATE | GATE Miscellaneous Info | GATE FAQs | Advertisement on GATE | Contact Us on OneStopGATE |
    Copyright © 2025. One Stop Gate.com. All rights reserved Testimonials |Link To Us |Sitemap |Privacy Policy | Terms and Conditions|About Us
    Our Portals : Academic Tutorials | Best eBooksworld | Beyond Stats | City Details | Interview Questions | India Job Forum | Excellent Mobiles | Free Bangalore | Give Me The Code | Gog Logo | Free Classifieds | Jobs Assist | Interview Questions | One Stop FAQs | One Stop GATE | One Stop GRE | One Stop IAS | One Stop MBA | One Stop SAP | One Stop Testing | Web Hosting | Quick Site Kit | Sirf Dosti | Source Codes World | Tasty Food | Tech Archive | Software Testing Interview Questions | Free Online Exams | The Galz | Top Masala | Vyom | Vyom eBooks | Vyom International | Vyom Links | Vyoms | Vyom World
    C Interview Questions | C++ Interview Questions | Send Free SMS | Placement Papers | SMS Jokes | Cool Forwards | Romantic Shayari