OneStopGate.Com
OnestopGate   OnestopGate
   Tuesday, April 30, 2024 Login  
OnestopGate
Home | Overview | Syllabus | Tutorials | FAQs | Downloads | Recommended Websites | Advertise | Payments | Contact Us | Forum
OneStopGate

GATE Resources
Gate Articles
Gate Books
Gate Colleges 
Gate Downloads 
Gate Faqs
Gate Jobs
Gate News 
Gate Sample Papers
Training Institutes

GATE Overview
Overview
GATE Eligibility
Structure Of GATE
GATE Coaching Centers
Colleges Providing M.Tech/M.E.
GATE Score
GATE Results
PG with Scholarships
Article On GATE
Admission Process For M.Tech/ MCP-PhD
GATE Topper 2012-13
GATE Forum




GATE 2025 Exclusive
Organizing Institute
Important Dates
How to Apply
Discipline Codes
GATE 2025 Exam Structure

GATE 2025 Syllabus
Aerospace Engg..
Agricultural Engg..
Architecture and Planning
Chemical Engg..
Chemistry
Civil Engg..
Computer Science / IT
Electronics & Communication Engg..
Electrical Engg..
Engineering Sciences
Geology and Geophysics
Instrumentation Engineering
Life Sciences
Mathematics
Mechanical Engg..
Metallurgical Engg..
Mining Engg..
Physics
Production & Industrial Engg..
Pharmaceutical Sciences
Textile Engineering and Fibre Science

GATE Study Material
Aerospace Engg..
Agricultural Engg..
Chemical Engg..
Chemistry
Civil Engg..
Computer Science / IT
Electronics & Communication Engg..
Electrical Engg..
Engineering Sciences
Instrumentation Engg..
Life Sciences
Mathematics
Mechanical Engg..
Physics
Pharmaceutical Sciences
Textile Engineering  and Fibre Science

GATE Preparation
GATE Pattern
GATE Tips N Tricks
Compare Evaluation
Sample Papers 
Gate Downloads 
Experts View

CEED 2013
CEED Exams
Eligibility
Application Forms
Important Dates
Contact Address
Examination Centres
CEED Sample Papers

Discuss GATE
GATE Forum
Exam Cities
Contact Details
Bank Details

Miscellaneous
Advertisment
Contact Us


Home » GATE Study Material » Life Science » Bio Technology » Plant Breeding

Plant Breeding

Looking for GATE Preparation Material? Join & Get here now!

** Gate 2013 Question Papers.. ** CEED 2013 Results.. ** Gate 2013 Question Papers With Solutions.. ** GATE 2013 CUT-OFFs.. ** GATE 2013 Results.. **

Plant Breeding

Plant Breeding

As a part of agriculture, man started rearing plants and animals to meet his requirements. This is when humans started to learn how to influence the process of natural evolution so as to breed plant or animals.

Progeny

Slowly and gradually, this process of expedited evolution, through selection and cultivation of plants, acquired the form of a routine endeavor�what we today call �plant breeding�. In this, heredity, which refers to the passage of various characteristic features from the main plant (the parent) to the plantlets (the progeny), plays an important role. The effects of heredity had been apparent to early man and he had taken advantage of them ever since the advent of agriculture.

Various methods have evolved in plant breeding. One of the most important methods is that of selection.

Early man

The ability to choose gave birth to the idea of selection. This is the most primitive and by and large the most successful method of plant breeding. Selection as a part of plant breeding started with the domestication of plants by early man. Domestication refers to the process of bringing wild species under human management. Not all selection over the years have been human influenced�many of the important crop species have resulted from the natural selection process, which is an integral part of evolution. As human knowledge of agriculture grew, man started shuffling crop species from one geographical terrain to another, thus making new introductions.

The first prerequisite of selection is the availability of variability, i.e. different types of forms. After a variable population is recognized, individuals that are the best performers for the desired feature, say fruit size in the case of tomatoes, are chosen and the rest of the population is discarded or rejected. The progeny of the selected individuals is grown further and again screened for the desired feature. This process is repeated until a uniform plant population is attained which has the best-desired characters. Eventually, a desired uniform crop variety is produced by this successive selection followed by multiplication of the selected individuals.

Selecting higher yielding plant varieties is no easy task. Various tools have been devised to deal with plant selection. In fact, the birth of genetics as an independent discipline in plant science started with some clever mathematical computations. This brainchild of yesteryears is now an important branch of genetics known as biometrics. Biometrics is defined as the application of statistics in biology. This has contributed greatly to the development of various systems based on which selection of plants is done. There are various methods by which plant selection is carried out, namely selection for uniform plants, known as pure line selection; selection from field-grown plants, known as bulk selection or mass selection; and selection from a well-documented list of parentage, commonly known as the pedigree system. Overall, the hallmark of selection lies in human ability to chose the best plants from a cluster of many.


Hybridization

In traditional terms, hybridization refers to the union of the male and the female gamete to produce a zygote. In plant science, hybridization also refers to the crossing or mating of two plants. The story of scientific hybridization of crop plants started with J G Kolreuter, who in 1761 published his work on the scientific bases of hybridization. Since then, hybridization followed by selection, has been the major tool of plant breeding.

In his quest to find more variability, man started experimenting with hybridization of plants so as to achieve the perfect plant type. This process was actually the beginning of expedited evolution since it led to the formation of new plant types artificially or due to human intervention at a much faster pace than it would have happened in nature. For example, the bread wheat that we eat today has taken about 500 years to evolve to its present form through human intervention. This form of wheat would have taken thousands of years to evolve had it been left to the natural evolution process.

Ways in which hybridization is used

Some of the ways in which hybridization has been exploited in breeding crop plants are given below

bullet.gif (62 bytes)Combination breeding: The main aim of combination breeding is to transfer one or more characters into a single variety or plant type from many others. For this, an existing plant variety may be used as the recipient parent while many other crop varieties or wild relatives may contribute as donor parents. The most commonly used method to achieve this goal is known as the backcross method. The plant type in which the character or the trait is being transferred is known as the recipient parent and the other as the donor parent. For this, the two plants are mated or crossed and the progeny is screened for the desired trait. The progeny plants possessing the desired trait are then selected and crossed back to the recipient parent. This process is repeated until the desired plant type having all the characteristics of the recipient in addition to the trait being transferred is finally obtained. This exercise is known as backcrossing. Backcrossing involves both hybridization and selection.

bullet.gif (62 bytes)Hybrid varieties: Plant scientists exploit the characteristic feature of better yielding �hybrids� in plants. Hybrid vigour, or hetrosis as it is scientifically known, exploits the fact that some offspring from the progeny of a cross between two known parents would be better than the parents themselves. Many hybrid varieties of several crop species are being grown all over the world today. An example of this is the hybrid tomatoes that we eat commonly. The philosophy of hybridization has been extended from �within the same species or genera (the same type of plants)� to �different species or genera (totally different plants)�. This is known as wide or distant hybridization. Wide hybridization has helped breeders to break what is known as the species or genera barrier for gene transfer, i.e. it has helped breeders to transfer beneficial characteristics from wild and weedy plants to the cultivated crop species.



Discussion Center

Discuss/
Query

Papers/
Syllabus

Feedback/
Suggestion

Yahoo
Groups

Sirfdosti
Groups

Contact
Us

MEMBERS LOGIN
  
Email ID:
Password:

  Forgot Password?
 New User? Register!

INTERVIEW EBOOK
Get 9,000+ Interview Questions & Answers in an eBook. Interview Question & Answer Guide
  • 9,000+ Interview Questions
  • All Questions Answered
  • 5 FREE Bonuses
  • Free Upgrades
GATE RESOURCES
 
  • Gate Books
  • Training Institutes
  • Gate FAQs
  • GATE BOOKS
     
  • Mechanical Engineeering Books
  • Robotics Automations Engineering Books
  • Civil Engineering Books
  • Chemical Engineering Books
  • Environmental Engineering Books
  • Electrical Engineering Books
  • Electronics Engineering Books
  • Information Technology Books
  • Software Engineering Books
  • GATE Preparation Books
  • Exciting Offers



    GATE Exam, Gate 2009, Gate Papers, Gate Preparation & Related Pages


    GATE Overview | GATE Eligibility | Structure Of GATE | GATE Training Institutes | Colleges Providing M.Tech/M.E. | GATE Score | GATE Results | PG with Scholarships | Article On GATE | GATE Forum | GATE 2009 Exclusive | GATE 2009 Syllabus | GATE Organizing Institute | Important Dates for GATE Exam | How to Apply for GATE | Discipline / Branch Codes | GATE Syllabus for Aerospace Engineering | GATE Syllabus for Agricultural Engineering | GATE Syllabus for Architecture and Planning | GATE Syllabus for Chemical Engineering | GATE Syllabus for Chemistry | GATE Syllabus for Civil Engineering | GATE Syllabus for Computer Science / IT | GATE Syllabus for Electronics and Communication Engineering | GATE Syllabus for Engineering Sciences | GATE Syllabus for Geology and Geophysics | GATE Syllabus for Instrumentation Engineering | GATE Syllabus for Life Sciences | GATE Syllabus for Mathematics | GATE Syllabus for Mechanical Engineering | GATE Syllabus for Metallurgical Engineering | GATE Syllabus for Mining Engineering | GATE Syllabus for Physics | GATE Syllabus for Production and Industrial Engineering | GATE Syllabus for Pharmaceutical Sciences | GATE Syllabus for Textile Engineering and Fibre Science | GATE Preparation | GATE Pattern | GATE Tips & Tricks | GATE Compare Evaluation | GATE Sample Papers | GATE Downloads | Experts View on GATE | CEED 2009 | CEED 2009 Exam | Eligibility for CEED Exam | Application forms of CEED Exam | Important Dates of CEED Exam | Contact Address for CEED Exam | CEED Examination Centres | CEED Sample Papers | Discuss GATE | GATE Forum of OneStopGATE.com | GATE Exam Cities | Contact Details for GATE | Bank Details for GATE | GATE Miscellaneous Info | GATE FAQs | Advertisement on GATE | Contact Us on OneStopGATE |
    Copyright © 2024. One Stop Gate.com. All rights reserved Testimonials |Link To Us |Sitemap |Privacy Policy | Terms and Conditions|About Us
    Our Portals : Academic Tutorials | Best eBooksworld | Beyond Stats | City Details | Interview Questions | India Job Forum | Excellent Mobiles | Free Bangalore | Give Me The Code | Gog Logo | Free Classifieds | Jobs Assist | Interview Questions | One Stop FAQs | One Stop GATE | One Stop GRE | One Stop IAS | One Stop MBA | One Stop SAP | One Stop Testing | Web Hosting | Quick Site Kit | Sirf Dosti | Source Codes World | Tasty Food | Tech Archive | Software Testing Interview Questions | Free Online Exams | The Galz | Top Masala | Vyom | Vyom eBooks | Vyom International | Vyom Links | Vyoms | Vyom World
    C Interview Questions | C++ Interview Questions | Send Free SMS | Placement Papers | SMS Jokes | Cool Forwards | Romantic Shayari