OneStopGate.Com
OnestopGate   OnestopGate
   Tuesday, November 19, 2024 Login  
OnestopGate
Home | Overview | Syllabus | Tutorials | FAQs | Downloads | Recommended Websites | Advertise | Payments | Contact Us | Forum
OneStopGate

GATE Resources
Gate Articles
Gate Books
Gate Colleges 
Gate Downloads 
Gate Faqs
Gate Jobs
Gate News 
Gate Sample Papers
Training Institutes

GATE Overview
Overview
GATE Eligibility
Structure Of GATE
GATE Coaching Centers
Colleges Providing M.Tech/M.E.
GATE Score
GATE Results
PG with Scholarships
Article On GATE
Admission Process For M.Tech/ MCP-PhD
GATE Topper 2012-13
GATE Forum




GATE 2025 Exclusive
Organizing Institute
Important Dates
How to Apply
Discipline Codes
GATE 2025 Exam Structure

GATE 2025 Syllabus
Aerospace Engg..
Agricultural Engg..
Architecture and Planning
Chemical Engg..
Chemistry
Civil Engg..
Computer Science / IT
Electronics & Communication Engg..
Electrical Engg..
Engineering Sciences
Geology and Geophysics
Instrumentation Engineering
Life Sciences
Mathematics
Mechanical Engg..
Metallurgical Engg..
Mining Engg..
Physics
Production & Industrial Engg..
Pharmaceutical Sciences
Textile Engineering and Fibre Science

GATE Study Material
Aerospace Engg..
Agricultural Engg..
Chemical Engg..
Chemistry
Civil Engg..
Computer Science / IT
Electronics & Communication Engg..
Electrical Engg..
Engineering Sciences
Instrumentation Engg..
Life Sciences
Mathematics
Mechanical Engg..
Physics
Pharmaceutical Sciences
Textile Engineering  and Fibre Science

GATE Preparation
GATE Pattern
GATE Tips N Tricks
Compare Evaluation
Sample Papers 
Gate Downloads 
Experts View

CEED 2013
CEED Exams
Eligibility
Application Forms
Important Dates
Contact Address
Examination Centres
CEED Sample Papers

Discuss GATE
GATE Forum
Exam Cities
Contact Details
Bank Details

Miscellaneous
Advertisment
Contact Us


Home » GATE Study Material » Mathematics » Algebra » Some group multiplication tables

Some group multiplication tables

Looking for GATE Preparation Material? Join & Get here now!

** Gate 2013 Question Papers.. ** CEED 2013 Results.. ** Gate 2013 Question Papers With Solutions.. ** GATE 2013 CUT-OFFs.. ** GATE 2013 Results.. **

Some group multiplication tables

Multiplication tables for groups of small order

Multiplication tables for groups of order 2 through 10

Section 7.10 outlines the classification of all groups of order less than 16.

The multiplication tables given below cover the groups of order 10 or less. That is, any group of order 2 through 10 is isomorphic to one of the groups given on this page. The reader needs to know these definitions: group, cyclic group, symmetric group, dihedral group, direct product of groups, subgroup, normal subgroup.

The quaternion group is discussed in Example 3.3.7. There are more group tables at the end of Section 7.10.


C2, the cyclic group of order 2

Described via the generator a
with relation a2 = 1:

1 a
1 1 a
a a 1

Elements:
order 2: a

Subgroups:
order 2: {1,a}
order 1: {1}


C3, the cyclic group of order 3

Described via the generator a
with relation a3 = 1:

1 a a2
1 1 a a2
a a a2 1
a2 a2 1 a

Elements:
order 3: a, a2

Subgroups:
order 3: {1,a,a2}
order 1: {1}


C4, the cyclic group of order 4

Described via the generator a
with relation a4 = 1:

1 a a2 a3
1 1 a a2 a3
a a a2 a3 1
a2 a2 a3 1 a
a3 a3 1 a a2
 

Elements:
order 4: a, a3
order 2: a2

Subgroups:
order 4: {1,a,a2,a3}
order 2: {1,a2}
order 1: {1}


V, the Klein four group

Described via generators a,b
with relations a2 = 1, b2 = 1, ba = ab:

1 a b ab
1 1 a b ab
a a 1 ab b
b b ab 1 a
ab ab b a 1

Elements:
order 2: a, b, ab

Subgroups:
order 4: {1,a,b,ab}
order 2: {1,a}, {1,b}, {1,ab}
order 1: {1}
 

 


 

C5, the cyclic group of order 5

Described via the generator a
with relation a5 = 1:

 

  1 a a2 a3 a4
1 1 a a2 a3 a4
a a a2 a3 a4 1
a2 a2 a3 a4 1 a
a3 a3 a4 1 a a2
a4 a4 1 a a2 a3
 

Elements:
order 5: a, a2, a3, a4

Subgroups:
order 5: {1,a,a2,a3,a4}
order 1: {1}

 


 

C6, the cyclic group of order 6

Described via the generator a
with relation a6 = 1:

 

  1 a a2 a3 a4 a5
1 1 a a2 a3 a4 a5
a a a2 a3 a4 a5 1
a2 a2 a3 a4 a5 1 a
a3 a3 a4 a5 1 a a2
a4 a4 a5 1 a a2 a3
a5 a5 1 a a2 a3 a4
 

Elements:
order 6: a, a5
order 3: a2, a4
order 2: a3

Subgroups:
order 6: {1,a,a2,a3,a4,a5}
order 3: {1,a2,a4}
order 2: {1,a3}
order 1: {1}

 


 

S3, the symmetric group on three elements

Described via generators a,b
with relations a3 = 1, b2 = 1, ba = a-1b:

 

      1 a a2   b ab a2b  
  1   1 a a2   b ab a2b  
  a   a a2 1   ab a2b b  
  a2   a2 1 a   a2b b ab  
  b   b a2b ab   1 a2 a  
  ab   ab b a2b   a 1 a2  
  a2b   a2b ab b   a2 a 1  
 

Elements:
order 3: a, a2
order 2: b, ab, a2b

Subgroups:
order 6: {1,a,a2,b,ab,a2b}
order 3: {1,a,a2}
order 2: {1,b}, {1,ab}, {1,a2b}
order 1: {1}
 

Normal subgroups:
order 6: {1,a,a2,b,ab,a2b}
order 3: {1,a,a2}
order 1: {1}
 

 


 

C7, the cyclic group of order 7

Described via the generator a
with relation a7 = 1:

 

  1 a a2 a3 a4 a5 a6
1 1 a a2 a3 a4 a5 a6
a a a2 a3 a4 a5 a6 1
a2 a2 a3 a4 a5 a6 1 a
a3 a3 a4 a5 a6 1 a a2
a4 a4 a5 a6 1 a a2 a3
a5 a5 a6 1 a a2 a3 a4
a6 a6 1 a a2 a3 a4 a5
 

Elements:
order 7: a, a2, a3, a4, a5, a6

Subgroups:
order 7: {1,a,a2,a3,a4, a5,a6}
order 1: {1}

 


 

C8, the cyclic group of order 8

Described via the generator a
with relation a8 = 1:

 

  1 a a2 a3 a4 a5 a6 a7
1 1 a a2 a3 a4 a5 a6 a7
a a a2 a3 a4 a5 a6 a7 1
a2 a2 a3 a4 a5 a6 a7 1 a
a3 a3 a4 a5 a6 a7 1 a a2
a4 a4 a5 a6 a7 1 a a2 a3
a5 a5 a6 a7 1 a a2 a3 a4
a6 a6 a7 1 a a2 a3 a4 a5
a7 a7 1 a a2 a3 a4 a5 a6
 

Elements:
order 8: a, a3, a5, a7
order 4: a2, a6
order 2: a4

Subgroups:
order 8: {1,a,a2,a3,a4, a5, a6, a7}
order 4: {1,a2,a4,a6}
order 2: {1,a4}
order 1: {1}

 


 

C4 x C2, the direct product of a cyclic group of order 4 and a cyclic group of order 2

Described via generators a, b
with relations a4 = 1, b2 = 1, ba = ab:

 

      1 a a2 a3   b ab a2b a3b  
  1   1 a a2 a3   b ab a2b a3b  
  a   a a2 a3 1   ab a2b a3b b  
  a2   a2 a3 1 a   a2b a3b b ab  
  a3   a3 1 a a2   a3b b ab a2b  
  b   b ab a2b a3b   1 a a2 a3  
  ab   ab a2b a3b b   a a2 a3 1  
  a2b   a2b a3b b ab   a2 a3 1 a  
  a3b   a3b b ab a2b   a3 1 a a2  
 

Elements:
order 4: a, a3, ab, a3b
order 2: a2, b, a2b
order 1: 1

Subgroups:
order 8: {1,a,a2,a3, b,ab,a2b,a3b}
order 4: {1,a,a2,a3} {1,ab,a2,a3b} {1,a2,b,a2b}
order 2: {1,a2}, {1,b}, {1,a2b}
order 1: {1}

 


 

C2 x C2 x C2, the direct product of 3 cyclic groups of order 2

Described via generators a,b,c
with relations a2 = 1, b2 = 1, c2 = 1, ba = ab, ca = ac, cb = bc:

 

      1 a   b ab   c ac   bc abc  
  1   1 a   b ab   c ac   bc abc  
  a   a 1   ab b   ac c   abc bc  
  b   b ab   1 a   bc abc   c ac  
  ab   ab b   a 1   abc bc   ac c  
  c   c ac   bc abc   1 a   b ab  
  ac   ac c   abc bc   a 1   ab b  
  bc   bc abc   c ac   b ab   1 a  
  abc   abc bc   ac c   ab b   a 1  
 

Elements:
order 2: a, b, ab, c, ac, bc, abc

Subgroups:
order 8: { 1, a, b, ab, c, ac, bc, abc }
order 4: {1,a,b,ab}, {1,a,c,ac}, {1,a,bc,abc}, {1,b,c,bc}, {1,b,ac,abc}, {1,ab,c,abc}, {1,ab,ac,bc}
order 2: {1,a}, {1,b}, {1,ab}, {1,c}, {1,ac}, {1,bc}, {1,abc}
order 1: {1}

 


 

D4, the dihedral group of order eight

Described via generators a,b
with relations a4 = 1, b2 = 1, ba = a-1b:

 

      1 a a2 a3   b ab a2b a3b  
  1   1 a a2 a3   b ab a2b a3b  
  a   a a2 a3 1   ab a2b a3b b  
  a2   a2 a3 1 a   a2b a3b b ab  
  a3   a3 1 a a2   a3b b ab a2b  
  b   b a3b a2b ab   1 a3 a2 a  
  ab   ab b a3b a2b   a 1 a3 a2  
  a2b   a2b ab b a3b   a2 a 1 a3  
  a3b   a3b a2b ab b   a3 a2 a 1  
 

Elements:
order 4: a, a3
order 2: a2, b, ab, a2b, a3b

Subgroups:
order 8: {1,a,a2,a3, b,ab,a2b,a3b}
order 4: {1,a2,b,a2b}, {1,a,a2,a3}, {1,a2,ab,a3b}
order 2: {1,b}, {1,a2b}, {1,a2}, {1,ab}, {1,a3b}
order 1: {1}
 

Normal subgroups:
order 8: {1,a,a2,a3, b,ab,a2b,a3b}
order 4: {1,a2,b,a2b}, {1,a,a2,a3}, {1,a2,ab,a3b}
order 2: {1,a2}
order 1: {1}
 

 


 

Q, the quaternion group (of order eight)

Described via the generators a,b
with relations a4 = 1, b2 = a2, ba = a-1b:

 

      1 a a2 a3   b ab a2b a3b  
  1   1 a a2 a3   b ab a2b a3b  
  a   a a2 a3 1   ab a2b a3b b  
  a2   a2 a3 1 a   a2b a3b b ab  
  a3   a3 1 a a2   a3b b ab a2b  
  b   b a3b a2b ab   a2 a 1 a3  
  ab   ab b a3b a2b   a3 a2 a 1  
  a2b   a2b ab b a3b   1 a3 a2 a  
  a3b   a3b a2b ab b   a 1 a3 a2  
 

Elements:
order 4: a, a3, b, ab, a2b, a3b
order 2: a2

Subgroups:
order 8: {1,a,a2,a3,b,ab,a2b,a3}
order 4: {1,a,a2,a3}, {1,b,a2,a2b}, {1,ab,a2,a3b}
order 2: {1,a2}
order 1: {1}
 

Normal subgroups:
order 8: {1,a,a2,a3,b,ab,a2b,a3}
order 4: {1,a,a2,a3}, {1,b,a2,a2b}, {1,ab,a2,a3b}
order 2: {1,a2}
order 1: {1}
 

 

Here are several different patterns for the multiplication table of the quaternion group, using the cross product of unit vectors i, j, k:

 

  x   +1 -1   +i -i   +j -j   +k -k  
  +1   +1 -1   +i -i   +j -j   +k -k  
  -1   -1 +1   -i +i   -j +j   -k +k  
  +i   +i -i   -1 +1   +k -k   -j +j  
  -i   -i +i   +1 -1   -k +k   +j -j  
  +j   +j -j   -k +k   -1 +1   +i -i  
  -j   -j +j   +k -k   +1 -1   -i +i  
  +k   +k -k   +j -j   -i +i   -1 +1  
  -k   -k +k   -j +j   +i -i   +1 -1  
 

Elements:
order 4: i, -i, j, -j, k, -k
order 2: -1
 

Subgroups:
order 8: {1,-1,i,-i,j,-j,k,-k}
order 4: {1,i,-1,-i}, {1,j,-1,-j}, {1,k,-1,-k}
order 2: {1,-1}
order 1: {1}
 

Normal subgroups:
order 8: {1,-1,i,-i,j,-j,k,-k}
order 4: {1,i,-1,-i}, {1,j,-1,-j}, {1,k,-1,-k}
order 2: {1,-1}
order 1: {1}
 

 

x +1 +i -1 -i +j +k -j -k
+1 +1 +i -1 -i +j +k -j -k
+i +i -1 -i +1 +k -j -k +j
-1 -1 -i +1 +i -j -k +j +k
-i -i +1 +i -1 -k +j +k -j
+j +j -k -j +k -1 +i +1 -i
+k +k +j -k -j -i -1 +i +1
-j -j +k +j -k +1 -i -1 +i
-k -k -j +k +j +i +1 -i -1
 

 


 

C9, the cyclic group of order 9

Described via the generator a
with relation a9 = 1:

 

  1 a a2 a3 a4 a5 a6 a7 a8
1 1 a a2 a3 a4 a5 a6 a7 a8
a a a2 a3 a4 a5 a6 a7 a8 1
a2 a2 a3 a4 a5 a6 a7 a8 1 a
a3 a3 a4 a5 a6 a7 a8 1 a a2
a4 a4 a5 a6 a7 a8 1 a a2 a3
a5 a5 a6 a7 a8 1 a a2 a3 a4
a6 a6 a7 a8 1 a a2 a3 a4 a5
a7 a7 a8 1 a a2 a3 a4 a5 a6
a8 a8 1 a a2 a3 a4 a5 a6 a7
 

Elements:
order 9: a, a2, a4, a5, a6, a7
order 3: a3, a6
 

Subgroups:
order 9: {1,a,a2,a3,a4, a5, a6, a7, a8}
order 3: {1,a3,a6}
order 1: {1}

 


 

C3 x C3, the direct product of two cyclic groups of order 3

Described via the generators a,b
with relations a3 = 1, b3 = 1, ba=ab:

 

1 a a2 b ab a2b b2 ab2 a2b2
1 1 a a2 b ab a2b b2 ab2 a2b2
a a a2 1 ab a2b b ab2 a2b2 b2
a2 a2 1 a a2b b ab a2b2 b2 ab2
b b ab a2b b2 ab2 a2b2 1 a a2
ab ab a2b b ab2 a2b2 b2 a a2 1
a2b a2b b ab a2b2 b2 ab2 a2 1 a
b2 b2 ab2 a2b2 1 a a2 b ab a2b
ab2 ab2 a2b2 b2 a a2 1 ab a2b b
a2b2 a2b2 b2 ab2 a2 1 a a2b b ab
 

Elements:
order 3: a, a2, b, ab, a2b, b2, ab2, a2b2
 

Subgroups:
order 3: {1,a,a2}, {1,b,b2}, {1,ab,a2b2}, {1,a2b,ab2}
order 1: {1}

 


 

C10, the cyclic group of order 10

Described via the generator a
with relation a10 = 1:

 

  1 a a2 a3 a4 a5 a6 a7 a8 a9
1 1 a a2 a3 a4 a5 a6 a7 a8 a9
a a a2 a3 a4 a5 a6 a7 a8 a9 1
a2 a2 a3 a4 a5 a6 a7 a8 a9 1 a
a3 a3 a4 a5 a6 a7 a8 a9 1 a a2
a4 a4 a5 a6 a7 a8 a9 1 a a2 a3
a5 a5 a6 a7 a8 a9 1 a a2 a3 a4
a6 a6 a7 a8 a9 1 a a2 a3 a4 a5
a7 a7 a8 a9 1 a a2 a3 a4 a5 a6
a8 a8 a9 1 a a2 a3 a4 a5 a6 a7
a9 a9 1 a a2 a3 a4 a5 a6 a7 a8
 

Elements:
order 10: a, a3, a7, a9
order 5: a2, a4, a6, a8
order 2: a5

Subgroups:
order 10: {1,a,a2,a3,a4, a5, a6, a7, a8, a9}
order 5: {1,a2,a4, a6,a8}
order 2: {1,a5}
order 1: {1}

 


 

D5, the dihedral group of order ten

Described via generators a,b
with relations a5 = 1, b2 = 1, ba = a-1b:

 

      1 a a2 a3 a4   b ab a2b a3b a4b  
  1   1 a a2 a3 a4   b ab a2b a3b a4b  
  a   a a2 a3 a4 1   ab a2b a3b a4b b  
  a2   a2 a3 a4 1 a   a2b a3b a4b b ab  
  a3   a3 a4 1 a a2   a3b a4b b ab a2b  
  a4   a4 1 a a2 a3   a4b b ab a2b a3b  
  b   b a4b a3b a2b ab   1 a4 a3 a2 a  
  ab   ab b a4b a3b a2b   a 1 a4 a3 a2  
  a2b   a2b ab b a4b a3b   a2 a 1 a4 a3  
  a3b   a3b a2b ab b a4b   a3 a2 a 1 a4  
  a4b   a4b a3b a2b ab b   a4 a3 a2 a 1  
 

Elements:
order 5: a, a2, a3, a4
order 2: b, ab, a2b, a3b, a4b
 

Subgroups:
order 10: {1,a,a2,a3,a4, b,ab,a2b,a3b,a4b}
order 5: {1,a,a2,a3,a4}
order 2: {1,b}, {1,ab} {1,a2b}, {1,a3b}, {1,a4b}
order 1: {1}
 

Normal subgroups:
order 10: {1,a,a2,a3,a4, b,ab,a2b,a3b,a4b}
order 5: {1,a,a2,a3,a4}
order 1: {1}



Discussion Center

Discuss/
Query

Papers/
Syllabus

Feedback/
Suggestion

Yahoo
Groups

Sirfdosti
Groups

Contact
Us

MEMBERS LOGIN
  
Email ID:
Password:

  Forgot Password?
 New User? Register!

INTERVIEW EBOOK
Get 9,000+ Interview Questions & Answers in an eBook. Interview Question & Answer Guide
  • 9,000+ Interview Questions
  • All Questions Answered
  • 5 FREE Bonuses
  • Free Upgrades
GATE RESOURCES
 
  • Gate Books
  • Training Institutes
  • Gate FAQs
  • GATE BOOKS
     
  • Mechanical Engineeering Books
  • Robotics Automations Engineering Books
  • Civil Engineering Books
  • Chemical Engineering Books
  • Environmental Engineering Books
  • Electrical Engineering Books
  • Electronics Engineering Books
  • Information Technology Books
  • Software Engineering Books
  • GATE Preparation Books
  • Exciting Offers



    GATE Exam, Gate 2009, Gate Papers, Gate Preparation & Related Pages


    GATE Overview | GATE Eligibility | Structure Of GATE | GATE Training Institutes | Colleges Providing M.Tech/M.E. | GATE Score | GATE Results | PG with Scholarships | Article On GATE | GATE Forum | GATE 2009 Exclusive | GATE 2009 Syllabus | GATE Organizing Institute | Important Dates for GATE Exam | How to Apply for GATE | Discipline / Branch Codes | GATE Syllabus for Aerospace Engineering | GATE Syllabus for Agricultural Engineering | GATE Syllabus for Architecture and Planning | GATE Syllabus for Chemical Engineering | GATE Syllabus for Chemistry | GATE Syllabus for Civil Engineering | GATE Syllabus for Computer Science / IT | GATE Syllabus for Electronics and Communication Engineering | GATE Syllabus for Engineering Sciences | GATE Syllabus for Geology and Geophysics | GATE Syllabus for Instrumentation Engineering | GATE Syllabus for Life Sciences | GATE Syllabus for Mathematics | GATE Syllabus for Mechanical Engineering | GATE Syllabus for Metallurgical Engineering | GATE Syllabus for Mining Engineering | GATE Syllabus for Physics | GATE Syllabus for Production and Industrial Engineering | GATE Syllabus for Pharmaceutical Sciences | GATE Syllabus for Textile Engineering and Fibre Science | GATE Preparation | GATE Pattern | GATE Tips & Tricks | GATE Compare Evaluation | GATE Sample Papers | GATE Downloads | Experts View on GATE | CEED 2009 | CEED 2009 Exam | Eligibility for CEED Exam | Application forms of CEED Exam | Important Dates of CEED Exam | Contact Address for CEED Exam | CEED Examination Centres | CEED Sample Papers | Discuss GATE | GATE Forum of OneStopGATE.com | GATE Exam Cities | Contact Details for GATE | Bank Details for GATE | GATE Miscellaneous Info | GATE FAQs | Advertisement on GATE | Contact Us on OneStopGATE |
    Copyright © 2024. One Stop Gate.com. All rights reserved Testimonials |Link To Us |Sitemap |Privacy Policy | Terms and Conditions|About Us
    Our Portals : Academic Tutorials | Best eBooksworld | Beyond Stats | City Details | Interview Questions | India Job Forum | Excellent Mobiles | Free Bangalore | Give Me The Code | Gog Logo | Free Classifieds | Jobs Assist | Interview Questions | One Stop FAQs | One Stop GATE | One Stop GRE | One Stop IAS | One Stop MBA | One Stop SAP | One Stop Testing | Web Hosting | Quick Site Kit | Sirf Dosti | Source Codes World | Tasty Food | Tech Archive | Software Testing Interview Questions | Free Online Exams | The Galz | Top Masala | Vyom | Vyom eBooks | Vyom International | Vyom Links | Vyoms | Vyom World
    C Interview Questions | C++ Interview Questions | Send Free SMS | Placement Papers | SMS Jokes | Cool Forwards | Romantic Shayari