OneStopGate.Com
OnestopGate   OnestopGate
   Tuesday, November 19, 2024 Login  
OnestopGate
Home | Overview | Syllabus | Tutorials | FAQs | Downloads | Recommended Websites | Advertise | Payments | Contact Us | Forum
OneStopGate

GATE Resources
Gate Articles
Gate Books
Gate Colleges 
Gate Downloads 
Gate Faqs
Gate Jobs
Gate News 
Gate Sample Papers
Training Institutes

GATE Overview
Overview
GATE Eligibility
Structure Of GATE
GATE Coaching Centers
Colleges Providing M.Tech/M.E.
GATE Score
GATE Results
PG with Scholarships
Article On GATE
Admission Process For M.Tech/ MCP-PhD
GATE Topper 2012-13
GATE Forum




GATE 2025 Exclusive
Organizing Institute
Important Dates
How to Apply
Discipline Codes
GATE 2025 Exam Structure

GATE 2025 Syllabus
Aerospace Engg..
Agricultural Engg..
Architecture and Planning
Chemical Engg..
Chemistry
Civil Engg..
Computer Science / IT
Electronics & Communication Engg..
Electrical Engg..
Engineering Sciences
Geology and Geophysics
Instrumentation Engineering
Life Sciences
Mathematics
Mechanical Engg..
Metallurgical Engg..
Mining Engg..
Physics
Production & Industrial Engg..
Pharmaceutical Sciences
Textile Engineering and Fibre Science

GATE Study Material
Aerospace Engg..
Agricultural Engg..
Chemical Engg..
Chemistry
Civil Engg..
Computer Science / IT
Electronics & Communication Engg..
Electrical Engg..
Engineering Sciences
Instrumentation Engg..
Life Sciences
Mathematics
Mechanical Engg..
Physics
Pharmaceutical Sciences
Textile Engineering  and Fibre Science

GATE Preparation
GATE Pattern
GATE Tips N Tricks
Compare Evaluation
Sample Papers 
Gate Downloads 
Experts View

CEED 2013
CEED Exams
Eligibility
Application Forms
Important Dates
Contact Address
Examination Centres
CEED Sample Papers

Discuss GATE
GATE Forum
Exam Cities
Contact Details
Bank Details

Miscellaneous
Advertisment
Contact Us


Home » GATE Study Material » Mathematics » Linear Programming » The general LP formulation

The general LP formulation

Looking for GATE Preparation Material? Join & Get here now!

** Gate 2013 Question Papers.. ** CEED 2013 Results.. ** Gate 2013 Question Papers With Solutions.. ** GATE 2013 CUT-OFFs.. ** GATE 2013 Results.. **

The general LP formulation

The general LP formulation

Generalizing formulation5, the general form for a Linear Programming problem is as follows:

Objective Function:

equation95

s.t.

Technological Constraints:

equation99



Sign Restrictions:

equation109

where ``urs'' implies unrestricted in sign.

The formulation of Equations6 to8 has the general structure of a mathematical programming problem, presented in the introduction of this section, but it is further characterized by the fact that the functions involved in the problem objective and the left-hand-side of the technological constraints are linear. It is the assumptions implied by linearity that to a large extent determine the applicability of the above model in real-world applications.

To provide a better feeling of the linearity concept, let us assume that the different decision variables tex2html_wrap_inline1519 correspond to various activities from which any solution will be eventually synthesized, and the values assigned to the variables by any given solution indicate the activity level in the considered plan(s). For instance, in the above example, the two activities are the production of items tex2html_wrap_inline1429 and tex2html_wrap_inline1431 , while the activity levels correspond to the daily production volume. Furthermore, let us assume that each technological constraint of Equation7 imposes some restriction on the consumption of a particular resource. Referring back to the prototype example, the two problem resources are the daily production capacity of the two workstations tex2html_wrap_inline1433 and tex2html_wrap_inline1435 . Under this interpretation, the linearity property implies that:

Additivity assumption:

the total consumption of each resource, as well as the overall objective value are the aggregates of the resource consumptions and the contributions to the problem objective, resulting by carrying out each activity independently, and

Proportionality assumption:

these consumptions and contributions for each activity are proportional to the actual activity level.

It is interesting to notice how the above statement reflects to the logic that was applied when we derived the technological constraints of the prototype example: (i) Our assumption that the processing of each unit of product at every station requires a constant amount of time establishes the proportionality property for our model. (ii) The assumption that the total processing time required at every station to meet the production levels of both products is the aggregate of the processing times required for each product if the corresponding activity took place independently, implies that our system has an additive behavior. It is also interesting to see how the linearity assumption restricts the modeling capabilities of the LP framework: As an example, in the LP paradigm, we cannot immediately model effects like economies of scale in the problem cost structure, and/or situations in which resource consumption by one activity depends on the corresponding consumption by another complementary activity. In some cases, one can approach these more complicated problems by applying some linearization scheme. The resulting approximations for many of these cases have been reported to be quite satisfactory.

Another approximating element in many real-life LP applications results from the so called divisibility assumption. This assumption refers to the fact that for LP theory and algortihms to work, the problem variables must be real. However, in many LP formulations, meaningful values for the levels of the activities involved can be only integer. This is, for instance, the case with the production of items tex2html_wrap_inline1429 and tex2html_wrap_inline1431 in our prototype example. Introducing integrality requirements for some of the variables in an LP formulation turns the problem to one belonging in the class of (Mixed) Integer Programming (MIP). The complexity of a MIP problem is much higher than that of LP's. Actually, the general IP formulation has be shown to belong to the notorious class of NP-complete problems. (This is a class of problems that have been ``formally'' shown to be extremely ``hard'' computationally). Given the increased difficulty of solving IP problems, sometimes in practice, near optimal solutions are obtained by solving the LP formulation resulting by relaxing the integrality requirements - known as the LP relaxation of the corresponding IP - and (judiciously) rounding off the fractional values for the integral variables in the optimal solution. Such an approach can be more easily justified in cases where the typical values for the integral variables are in the order of tens or above, since the errors introduced by the rounding-off are rather small, in a relative sense.

We conclude our discussion on the general LP formulation, by formally defining the solution search space and optimality. Specifically, we shall define as the feasible region of the LP of Equations6 to8, the entire set of vectors tex2html_wrap_inline1535 that satisfy the technological constraints of Eq.7 and the sign restrictions of Eq.8. An optimal solution to the problem is any feasible vector that further satisfies the optimality requirement expressed by Eq.6. In the next section, we provide a geometric characterization of the feasible region and the optimality condition, for the special case of LP's having only two decision variables.





Discussion Center

Discuss/
Query

Papers/
Syllabus

Feedback/
Suggestion

Yahoo
Groups

Sirfdosti
Groups

Contact
Us

MEMBERS LOGIN
  
Email ID:
Password:

  Forgot Password?
 New User? Register!

INTERVIEW EBOOK
Get 9,000+ Interview Questions & Answers in an eBook. Interview Question & Answer Guide
  • 9,000+ Interview Questions
  • All Questions Answered
  • 5 FREE Bonuses
  • Free Upgrades
GATE RESOURCES
 
  • Gate Books
  • Training Institutes
  • Gate FAQs
  • GATE BOOKS
     
  • Mechanical Engineeering Books
  • Robotics Automations Engineering Books
  • Civil Engineering Books
  • Chemical Engineering Books
  • Environmental Engineering Books
  • Electrical Engineering Books
  • Electronics Engineering Books
  • Information Technology Books
  • Software Engineering Books
  • GATE Preparation Books
  • Exciting Offers



    GATE Exam, Gate 2009, Gate Papers, Gate Preparation & Related Pages


    GATE Overview | GATE Eligibility | Structure Of GATE | GATE Training Institutes | Colleges Providing M.Tech/M.E. | GATE Score | GATE Results | PG with Scholarships | Article On GATE | GATE Forum | GATE 2009 Exclusive | GATE 2009 Syllabus | GATE Organizing Institute | Important Dates for GATE Exam | How to Apply for GATE | Discipline / Branch Codes | GATE Syllabus for Aerospace Engineering | GATE Syllabus for Agricultural Engineering | GATE Syllabus for Architecture and Planning | GATE Syllabus for Chemical Engineering | GATE Syllabus for Chemistry | GATE Syllabus for Civil Engineering | GATE Syllabus for Computer Science / IT | GATE Syllabus for Electronics and Communication Engineering | GATE Syllabus for Engineering Sciences | GATE Syllabus for Geology and Geophysics | GATE Syllabus for Instrumentation Engineering | GATE Syllabus for Life Sciences | GATE Syllabus for Mathematics | GATE Syllabus for Mechanical Engineering | GATE Syllabus for Metallurgical Engineering | GATE Syllabus for Mining Engineering | GATE Syllabus for Physics | GATE Syllabus for Production and Industrial Engineering | GATE Syllabus for Pharmaceutical Sciences | GATE Syllabus for Textile Engineering and Fibre Science | GATE Preparation | GATE Pattern | GATE Tips & Tricks | GATE Compare Evaluation | GATE Sample Papers | GATE Downloads | Experts View on GATE | CEED 2009 | CEED 2009 Exam | Eligibility for CEED Exam | Application forms of CEED Exam | Important Dates of CEED Exam | Contact Address for CEED Exam | CEED Examination Centres | CEED Sample Papers | Discuss GATE | GATE Forum of OneStopGATE.com | GATE Exam Cities | Contact Details for GATE | Bank Details for GATE | GATE Miscellaneous Info | GATE FAQs | Advertisement on GATE | Contact Us on OneStopGATE |
    Copyright © 2024. One Stop Gate.com. All rights reserved Testimonials |Link To Us |Sitemap |Privacy Policy | Terms and Conditions|About Us
    Our Portals : Academic Tutorials | Best eBooksworld | Beyond Stats | City Details | Interview Questions | India Job Forum | Excellent Mobiles | Free Bangalore | Give Me The Code | Gog Logo | Free Classifieds | Jobs Assist | Interview Questions | One Stop FAQs | One Stop GATE | One Stop GRE | One Stop IAS | One Stop MBA | One Stop SAP | One Stop Testing | Web Hosting | Quick Site Kit | Sirf Dosti | Source Codes World | Tasty Food | Tech Archive | Software Testing Interview Questions | Free Online Exams | The Galz | Top Masala | Vyom | Vyom eBooks | Vyom International | Vyom Links | Vyoms | Vyom World
    C Interview Questions | C++ Interview Questions | Send Free SMS | Placement Papers | SMS Jokes | Cool Forwards | Romantic Shayari