OneStopGate.Com
OnestopGate   OnestopGate
   Sunday, November 17, 2024 Login  
OnestopGate
Home | Overview | Syllabus | Tutorials | FAQs | Downloads | Recommended Websites | Advertise | Payments | Contact Us | Forum
OneStopGate

GATE Resources
Gate Articles
Gate Books
Gate Colleges 
Gate Downloads 
Gate Faqs
Gate Jobs
Gate News 
Gate Sample Papers
Training Institutes

GATE Overview
Overview
GATE Eligibility
Structure Of GATE
GATE Coaching Centers
Colleges Providing M.Tech/M.E.
GATE Score
GATE Results
PG with Scholarships
Article On GATE
Admission Process For M.Tech/ MCP-PhD
GATE Topper 2012-13
GATE Forum




GATE 2025 Exclusive
Organizing Institute
Important Dates
How to Apply
Discipline Codes
GATE 2025 Exam Structure

GATE 2025 Syllabus
Aerospace Engg..
Agricultural Engg..
Architecture and Planning
Chemical Engg..
Chemistry
Civil Engg..
Computer Science / IT
Electronics & Communication Engg..
Electrical Engg..
Engineering Sciences
Geology and Geophysics
Instrumentation Engineering
Life Sciences
Mathematics
Mechanical Engg..
Metallurgical Engg..
Mining Engg..
Physics
Production & Industrial Engg..
Pharmaceutical Sciences
Textile Engineering and Fibre Science

GATE Study Material
Aerospace Engg..
Agricultural Engg..
Chemical Engg..
Chemistry
Civil Engg..
Computer Science / IT
Electronics & Communication Engg..
Electrical Engg..
Engineering Sciences
Instrumentation Engg..
Life Sciences
Mathematics
Mechanical Engg..
Physics
Pharmaceutical Sciences
Textile Engineering  and Fibre Science

GATE Preparation
GATE Pattern
GATE Tips N Tricks
Compare Evaluation
Sample Papers 
Gate Downloads 
Experts View

CEED 2013
CEED Exams
Eligibility
Application Forms
Important Dates
Contact Address
Examination Centres
CEED Sample Papers

Discuss GATE
GATE Forum
Exam Cities
Contact Details
Bank Details

Miscellaneous
Advertisment
Contact Us


Complex Functions and Linear Mappings

Looking for GATE Preparation Material? Join & Get here now!

** Gate 2013 Question Papers.. ** CEED 2013 Results.. ** Gate 2013 Question Papers With Solutions.. ** GATE 2013 CUT-OFFs.. ** GATE 2013 Results.. **

<<Previous
Complex Functions and Linear Mappings

Example 2.7. Show that the function[Graphics:Images/ComplexFunLinear_gr_163.gif]maps the line[Graphics:Images/ComplexFunLinear_gr_164.gif]in the xy plane onto the line[Graphics:Images/ComplexFunLinear_gr_165.gif]in the w plane.

Solution.Method 1:With[Graphics:Images/ComplexFunLinear_gr_166.gif],we want to describe[Graphics:Images/ComplexFunLinear_gr_167.gif].We let[Graphics:Images/ComplexFunLinear_gr_168.gif]and get

[Graphics:Images/ComplexFunLinear_gr_169.gif]

where [Graphics:Images/ComplexFunLinear_gr_170.gif] is the notation for "if and only if."Note what this result says:[Graphics:Images/ComplexFunLinear_gr_171.gif]. The image of A under f, therefore, is the set[Graphics:Images/ComplexFunLinear_gr_172.gif].

Method 2:We write[Graphics:Images/ComplexFunLinear_gr_173.gif]and note that the transformation can be given by the equations[Graphics:Images/ComplexFunLinear_gr_174.gif].Because A is described by[Graphics:Images/ComplexFunLinear_gr_175.gif],we can substitute[Graphics:Images/ComplexFunLinear_gr_176.gif]into the equation[Graphics:Images/ComplexFunLinear_gr_177.gif]to obtain[Graphics:Images/ComplexFunLinear_gr_178.gif],which we can rewrite as[Graphics:Images/ComplexFunLinear_gr_179.gif].If you use this method, be sure to pay careful attention to domains and ranges.

We now look at some elementary mappings.If we let[Graphics:Images/ComplexFunLinear_gr_195.gif]denote a fixed complex constant, the transformation

[Graphics:Images/ComplexFunLinear_gr_196.gif]

is a one-to-one mapping of the z-plane onto the w-plane and is called a translation.This transformation can be visualized as a rigid translation whereby the pointzis displaced through the vector[Graphics:Images/ComplexFunLinear_gr_197.gif]to its new position[Graphics:Images/ComplexFunLinear_gr_198.gif].The inverse mapping is given by

[Graphics:Images/ComplexFunLinear_gr_199.gif]

and shows thatTis a one-to-one mapping from the z-plane onto the w-plane. The effect of a translation is depicted in Figure 2.5.

[Graphics:Images/ComplexFunLinear_gr_200.gif]

Figure 2.5The translation[Graphics:Images/ComplexFunLinear_gr_201.gif].

If we let[Graphics:Images/ComplexFunLinear_gr_202.gif]be a fixed real number, then for[Graphics:Images/ComplexFunLinear_gr_203.gif],the transformation

[Graphics:Images/ComplexFunLinear_gr_204.gif]

is a one-to-one mapping of the z-plane onto the w-plane and is called a rotation.It can be visualized as a rigid rotation whereby the pointzis rotated about the origin through an angle[Graphics:Images/ComplexFunLinear_gr_205.gif]to its new position[Graphics:Images/ComplexFunLinear_gr_206.gif].If we use polar coordinates and designate[Graphics:Images/ComplexFunLinear_gr_207.gif]in the w-plane, then the inverse mapping is

[Graphics:Images/ComplexFunLinear_gr_208.gif].

This analysis shows thatRis a one-to-one mapping from the z-plane onto the w-plane.The effect of rotation is depicted in Figure 2.6.

[Graphics:Images/ComplexFunLinear_gr_209.gif]

Figure 2.6The rotation[Graphics:Images/ComplexFunLinear_gr_210.gif].

Example 2.8.The ellipse centered at the origin with a horizontal major axis of 4 units and vertical minor axis of 2 units can be represented by the parametric equation

[Graphics:Images/ComplexFunLinear_gr_211.gif],for[Graphics:Images/ComplexFunLinear_gr_212.gif].

Suppose we wanted to rotate the ellipse by an angle of [Graphics:Images/ComplexFunLinear_gr_213.gif] radians and shift the center of the ellipse 2 units to the right and 1 unit up. Using complex arithmetic, we can easily generate a parametric equation r(t) that does so:

[Graphics:Images/ComplexFunLinear_gr_214.gif]
for[Graphics:Images/ComplexFunLinear_gr_215.gif].Figure 2.7 shows parametric plots of these ellipses.

[Graphics:Images/ComplexFunLinear_gr_216.gif]

Figure 2.7(a)Plot of the original ellipse(b)Plot of the rotated ellipse
[Graphics:Images/ComplexFunLinear_gr_217.gif][Graphics:Images/ComplexFunLinear_gr_218.gif]


If we let[Graphics:Images/ComplexFunLinear_gr_224.gif]be a fixed positive real number, then the transformation

[Graphics:Images/ComplexFunLinear_gr_225.gif]

is a one-to-one mapping of the z-plane onto the w-plane and is called a magnification.If[Graphics:Images/ComplexFunLinear_gr_226.gif],it has the effect of stretching the distance between points by the factorK.If[Graphics:Images/ComplexFunLinear_gr_227.gif],then it reduces the distance between points by the factorK.The inverse transformation is given by

[Graphics:Images/ComplexFunLinear_gr_228.gif]

and shows thatSis a one-to-one mapping from the z-plane onto the w-plane.The effect of magnification is shown in Figure 2.8.


Figure 2.8The magnification[Graphics:Images/ComplexFunLinear_gr_229.gif].

Finally, if we let[Graphics:Images/ComplexFunLinear_gr_230.gif]and[Graphics:Images/ComplexFunLinear_gr_231.gif], where[Graphics:Images/ComplexFunLinear_gr_232.gif]is a positive real number, then the transformation

[Graphics:Images/ComplexFunLinear_gr_233.gif]

is a one-to-one mapping of the z-plane onto the w-plane and is called a linear transformation.It can be considered as the composition of a rotation, a magnification, and a translation.It has the effect of rotating the plane though an angle given by[Graphics:Images/ComplexFunLinear_gr_234.gif],followed by a magnification by the factor[Graphics:Images/ComplexFunLinear_gr_235.gif], followed by a translation by the vector[Graphics:Images/ComplexFunLinear_gr_236.gif].The inverse mapping is given by[Graphics:Images/ComplexFunLinear_gr_237.gif]and shows that L is a one-to-one mapping from the z-plane onto the w-plane.

Example 2.9.Show that the linear transformation[Graphics:Images/ComplexFunLinear_gr_238.gif]maps the right half plane[Graphics:Images/ComplexFunLinear_gr_239.gif]onto the upper half plane[Graphics:Images/ComplexFunLinear_gr_240.gif].

Solution.Method 1:Let[Graphics:Images/ComplexFunLinear_gr_241.gif].To describe[Graphics:Images/ComplexFunLinear_gr_242.gif],we solve[Graphics:Images/ComplexFunLinear_gr_243.gif]for z to get[Graphics:Images/ComplexFunLinear_gr_244.gif].We have the following

[Graphics:Images/ComplexFunLinear_gr_245.gif]

Thus[Graphics:Images/ComplexFunLinear_gr_246.gif],which is the same as saying[Graphics:Images/ComplexFunLinear_gr_247.gif].

Method 2: When we write[Graphics:Images/ComplexFunLinear_gr_248.gif]in Cartesian form as

[Graphics:Images/ComplexFunLinear_gr_249.gif],

we see that the transformation can be given by the equations[Graphics:Images/ComplexFunLinear_gr_250.gif] and [Graphics:Images/ComplexFunLinear_gr_251.gif].Substituting[Graphics:Images/ComplexFunLinear_gr_252.gif]in the inequality[Graphics:Images/ComplexFunLinear_gr_253.gif]gives[Graphics:Images/ComplexFunLinear_gr_254.gif],or[Graphics:Images/ComplexFunLinear_gr_255.gif],which is the upper half-plane[Graphics:Images/ComplexFunLinear_gr_256.gif].

Method 3:The effect of the transformation[Graphics:Images/ComplexFunLinear_gr_257.gif] is a rotation of the plane through the angle[Graphics:Images/ComplexFunLinear_gr_258.gif] (when z is multiplied by [Graphics:Images/ComplexFunLinear_gr_259.gif]) followed by a translation by the vector[Graphics:Images/ComplexFunLinear_gr_260.gif].The first operation yields the set[Graphics:Images/ComplexFunLinear_gr_261.gif].The second shifts this set up 1 unit, resulting in the set[Graphics:Images/ComplexFunLinear_gr_262.gif].We illustrate this result in Figure 2.9.

[Graphics:Images/ComplexFunLinear_gr_263.gif]

Figure 2.9The linear transformation[Graphics:Images/ComplexFunLinear_gr_264.gif].


Translations and rotations preserve angles.First, magnifications rescale distance by a factor K, so it follows that triangles are mapped onto similar triangles, preserving angles.Then, because a linear transformation can be considered to be a composition of a rotation, a magnification, and a translation, it follows that linear transformations preserve angles.Consequently, any geometric object is mapped onto an object that is similar to the original object; hence linear transformations can be called similarity mappings.

Note. The usage of the phrase "linear transformation" in a "complex analysis course" is different than that the usage in "linear algebra courses".


Example 2.10.Show that the image of the open disk[Graphics:Images/ComplexFunLinear_gr_282.gif]under the linear transformation[Graphics:Images/ComplexFunLinear_gr_283.gif]is the open disk[Graphics:Images/ComplexFunLinear_gr_284.gif].

Solution.The inverse transformation is[Graphics:Images/ComplexFunLinear_gr_285.gif],so if we designate the range of f as B, then

[Graphics:Images/ComplexFunLinear_gr_286.gif]
[Graphics:Images/ComplexFunLinear_gr_287.gif][Graphics:Images/ComplexFunLinear_gr_288.gif]
[Graphics:Images/ComplexFunLinear_gr_289.gif]

Hence the disk with center[Graphics:Images/ComplexFunLinear_gr_290.gif]and radius 1 is mapped one-to-one and onto the disk with center[Graphics:Images/ComplexFunLinear_gr_291.gif]and radius 5 as shown in Figure 2.10.

[Graphics:Images/ComplexFunLinear_gr_292.gif]

Figure 2.10The mapping[Graphics:Images/ComplexFunLinear_gr_293.gif].


Example 2.11.Show that the image of the right half plane[Graphics:Images/ComplexFunLinear_gr_312.gif]under the linear transformation[Graphics:Images/ComplexFunLinear_gr_313.gif]is the half plane[Graphics:Images/ComplexFunLinear_gr_314.gif].

Solution.The inverse transformation is given by

[Graphics:Images/ComplexFunLinear_gr_315.gif],

which we write as

[Graphics:Images/ComplexFunLinear_gr_316.gif].

Substituting[Graphics:Images/ComplexFunLinear_gr_317.gif]intoe[Graphics:Images/ComplexFunLinear_gr_318.gif]gives[Graphics:Images/ComplexFunLinear_gr_319.gif],which simplifies[Graphics:Images/ComplexFunLinear_gr_320.gif].Figure 2.11 illustrates the mapping.

[Graphics:Images/ComplexFunLinear_gr_321.gif]

Figure 2.11The the linear transformation[Graphics:Images/ComplexFunLinear_gr_322.gif].
<<Previous



Discussion Center

Discuss/
Query

Papers/
Syllabus

Feedback/
Suggestion

Yahoo
Groups

Sirfdosti
Groups

Contact
Us

MEMBERS LOGIN
  
Email ID:
Password:

  Forgot Password?
 New User? Register!

INTERVIEW EBOOK
Get 9,000+ Interview Questions & Answers in an eBook. Interview Question & Answer Guide
  • 9,000+ Interview Questions
  • All Questions Answered
  • 5 FREE Bonuses
  • Free Upgrades
GATE RESOURCES
 
  • Gate Books
  • Training Institutes
  • Gate FAQs
  • GATE BOOKS
     
  • Mechanical Engineeering Books
  • Robotics Automations Engineering Books
  • Civil Engineering Books
  • Chemical Engineering Books
  • Environmental Engineering Books
  • Electrical Engineering Books
  • Electronics Engineering Books
  • Information Technology Books
  • Software Engineering Books
  • GATE Preparation Books
  • Exciting Offers



    GATE Exam, Gate 2009, Gate Papers, Gate Preparation & Related Pages


    GATE Overview | GATE Eligibility | Structure Of GATE | GATE Training Institutes | Colleges Providing M.Tech/M.E. | GATE Score | GATE Results | PG with Scholarships | Article On GATE | GATE Forum | GATE 2009 Exclusive | GATE 2009 Syllabus | GATE Organizing Institute | Important Dates for GATE Exam | How to Apply for GATE | Discipline / Branch Codes | GATE Syllabus for Aerospace Engineering | GATE Syllabus for Agricultural Engineering | GATE Syllabus for Architecture and Planning | GATE Syllabus for Chemical Engineering | GATE Syllabus for Chemistry | GATE Syllabus for Civil Engineering | GATE Syllabus for Computer Science / IT | GATE Syllabus for Electronics and Communication Engineering | GATE Syllabus for Engineering Sciences | GATE Syllabus for Geology and Geophysics | GATE Syllabus for Instrumentation Engineering | GATE Syllabus for Life Sciences | GATE Syllabus for Mathematics | GATE Syllabus for Mechanical Engineering | GATE Syllabus for Metallurgical Engineering | GATE Syllabus for Mining Engineering | GATE Syllabus for Physics | GATE Syllabus for Production and Industrial Engineering | GATE Syllabus for Pharmaceutical Sciences | GATE Syllabus for Textile Engineering and Fibre Science | GATE Preparation | GATE Pattern | GATE Tips & Tricks | GATE Compare Evaluation | GATE Sample Papers | GATE Downloads | Experts View on GATE | CEED 2009 | CEED 2009 Exam | Eligibility for CEED Exam | Application forms of CEED Exam | Important Dates of CEED Exam | Contact Address for CEED Exam | CEED Examination Centres | CEED Sample Papers | Discuss GATE | GATE Forum of OneStopGATE.com | GATE Exam Cities | Contact Details for GATE | Bank Details for GATE | GATE Miscellaneous Info | GATE FAQs | Advertisement on GATE | Contact Us on OneStopGATE |
    Copyright © 2024. One Stop Gate.com. All rights reserved Testimonials |Link To Us |Sitemap |Privacy Policy | Terms and Conditions|About Us
    Our Portals : Academic Tutorials | Best eBooksworld | Beyond Stats | City Details | Interview Questions | India Job Forum | Excellent Mobiles | Free Bangalore | Give Me The Code | Gog Logo | Free Classifieds | Jobs Assist | Interview Questions | One Stop FAQs | One Stop GATE | One Stop GRE | One Stop IAS | One Stop MBA | One Stop SAP | One Stop Testing | Web Hosting | Quick Site Kit | Sirf Dosti | Source Codes World | Tasty Food | Tech Archive | Software Testing Interview Questions | Free Online Exams | The Galz | Top Masala | Vyom | Vyom eBooks | Vyom International | Vyom Links | Vyoms | Vyom World
    C Interview Questions | C++ Interview Questions | Send Free SMS | Placement Papers | SMS Jokes | Cool Forwards | Romantic Shayari