OneStopGate.Com
OnestopGate   OnestopGate
   Sunday, November 17, 2024 Login  
OnestopGate
Home | Overview | Syllabus | Tutorials | FAQs | Downloads | Recommended Websites | Advertise | Payments | Contact Us | Forum
OneStopGate

GATE Resources
Gate Articles
Gate Books
Gate Colleges 
Gate Downloads 
Gate Faqs
Gate Jobs
Gate News 
Gate Sample Papers
Training Institutes

GATE Overview
Overview
GATE Eligibility
Structure Of GATE
GATE Coaching Centers
Colleges Providing M.Tech/M.E.
GATE Score
GATE Results
PG with Scholarships
Article On GATE
Admission Process For M.Tech/ MCP-PhD
GATE Topper 2012-13
GATE Forum




GATE 2025 Exclusive
Organizing Institute
Important Dates
How to Apply
Discipline Codes
GATE 2025 Exam Structure

GATE 2025 Syllabus
Aerospace Engg..
Agricultural Engg..
Architecture and Planning
Chemical Engg..
Chemistry
Civil Engg..
Computer Science / IT
Electronics & Communication Engg..
Electrical Engg..
Engineering Sciences
Geology and Geophysics
Instrumentation Engineering
Life Sciences
Mathematics
Mechanical Engg..
Metallurgical Engg..
Mining Engg..
Physics
Production & Industrial Engg..
Pharmaceutical Sciences
Textile Engineering and Fibre Science

GATE Study Material
Aerospace Engg..
Agricultural Engg..
Chemical Engg..
Chemistry
Civil Engg..
Computer Science / IT
Electronics & Communication Engg..
Electrical Engg..
Engineering Sciences
Instrumentation Engg..
Life Sciences
Mathematics
Mechanical Engg..
Physics
Pharmaceutical Sciences
Textile Engineering  and Fibre Science

GATE Preparation
GATE Pattern
GATE Tips N Tricks
Compare Evaluation
Sample Papers 
Gate Downloads 
Experts View

CEED 2013
CEED Exams
Eligibility
Application Forms
Important Dates
Contact Address
Examination Centres
CEED Sample Papers

Discuss GATE
GATE Forum
Exam Cities
Contact Details
Bank Details

Miscellaneous
Advertisment
Contact Us


Home » GATE Study Material » Mathematics » Numerical Analysis » Linear Equations » Gauss-Jordan Elimination

Gauss-Jordan Elimination

Looking for GATE Preparation Material? Join & Get here now!

** Gate 2013 Question Papers.. ** CEED 2013 Results.. ** Gate 2013 Question Papers With Solutions.. ** GATE 2013 CUT-OFFs.. ** GATE 2013 Results.. **

Gauss-Jordan Elimination

Gauss-Jordan Elimination

     

    In this module we develop a algorithm for solving a general linear system of equations [Graphics:Images/GaussianJordanMod_gr_1.gif] consisting of n equations and n unknowns where it is assumed that the system has a unique solution.  The method is attributed Johann Carl Friedrich Gauss (1777-1855) and Wilhelm Jordan (1842 to 1899).  The following theorem states the sufficient conditions for the existence and uniqueness of solutions of a linear system [Graphics:Images/GaussianJordanMod_gr_2.gif].  

Theorem ( Unique Solutions ) Assume that [Graphics:Images/GaussianJordanMod_gr_3.gif] is an [Graphics:Images/GaussianJordanMod_gr_4.gif] matrix.  The following statements are equivalent.

     (i) Given any [Graphics:Images/GaussianJordanMod_gr_5.gif] matrix [Graphics:Images/GaussianJordanMod_gr_6.gif], the linear system [Graphics:Images/GaussianJordanMod_gr_7.gif] has a unique solution.
     
    (ii) The matrix [Graphics:Images/GaussianJordanMod_gr_8.gif] is nonsingular (i.e., [Graphics:Images/GaussianJordanMod_gr_9.gif] exists).
    
   (iii) The system of equations [Graphics:Images/GaussianJordanMod_gr_10.gif] has the unique solution [Graphics:Images/GaussianJordanMod_gr_11.gif].  
   
   (iv) The determinant of [Graphics:Images/GaussianJordanMod_gr_12.gif] is nonzero, i.e. [Graphics:Images/GaussianJordanMod_gr_13.gif].  

    It is convenient to store all the coefficients of the linear system [Graphics:Images/GaussianJordanMod_gr_14.gif] in one array of dimension [Graphics:Images/GaussianJordanMod_gr_15.gif].  The coefficients of [Graphics:Images/GaussianJordanMod_gr_16.gif] are stored in column [Graphics:Images/GaussianJordanMod_gr_17.gif] of the array (i.e. [Graphics:Images/GaussianJordanMod_gr_18.gif]).  Row [Graphics:Images/GaussianJordanMod_gr_19.gif] contains all the coefficients necessary to represent the [Graphics:Images/GaussianJordanMod_gr_20.gif] equation in the linear system. The augmented matrix is denoted [Graphics:Images/GaussianJordanMod_gr_21.gif] and the linear system is represented as follows:

         [Graphics:Images/GaussianJordanMod_gr_22.gif][Graphics:Images/GaussianJordanMod_gr_23.gif]  

    The system [Graphics:Images/GaussianJordanMod_gr_24.gif], with augmented matrix [Graphics:Images/GaussianJordanMod_gr_25.gif], can be solved by performing row operations on [Graphics:Images/GaussianJordanMod_gr_26.gif].  The variables  are placeholders for the coefficients and cam be omitted until the end of the computation.

 

Theorem ( Elementary Row Operations ). The following operations applied to the augmented matrix [Graphics:Images/GaussianJordanMod_gr_27.gif] yield an equivalent linear system.

     (i) Interchanges:    The order of two rows can be interchanged.  
     
    (ii) Scaling:       Multiplying a row by a nonzero constant.
    
   (iii) Replacement:    Row r can be replaced by the sum of that tow and a nonzero multiple of any other row;
                               that is:  [Graphics:Images/GaussianJordanMod_gr_28.gif].      

    It is common practice to implement (iii) by replacing a row with the difference of that row and a multiple of another row.  

 

Definition ( Pivot Element ). The number [Graphics:Images/GaussianJordanMod_gr_29.gif] in the coefficient matrix [Graphics:Images/GaussianJordanMod_gr_30.gif] that is used to eliminate [Graphics:Images/GaussianJordanMod_gr_31.gif] where [Graphics:Images/GaussianJordanMod_gr_32.gif], is called the [Graphics:Images/GaussianJordanMod_gr_33.gif] pivot element, and the [Graphics:Images/GaussianJordanMod_gr_34.gif] row is called the pivot row.      

 

Theorem ( Gaussian Elimination with Back Substitution ). Assume that [Graphics:Images/GaussianJordanMod_gr_35.gif] is an [Graphics:Images/GaussianJordanMod_gr_36.gif] nonsingular matrix. There exists a unique system [Graphics:Images/GaussianJordanMod_gr_37.gif] that is equivalent to the given system [Graphics:Images/GaussianJordanMod_gr_38.gif], where [Graphics:Images/GaussianJordanMod_gr_39.gif] is an upper-triangular matrix with [Graphics:Images/GaussianJordanMod_gr_40.gif] for [Graphics:Images/GaussianJordanMod_gr_41.gif].  After  [Graphics:Images/GaussianJordanMod_gr_42.gif] are constructed, back substitution can be used to solve [Graphics:Images/GaussianJordanMod_gr_43.gif] for [Graphics:Images/GaussianJordanMod_gr_44.gif].  

Algorithm I. (Limited Gauss-Jordan Elimination).  Construct the solution to the linear system  [Graphics:Images/GaussianJordanMod_gr_45.gif]  by using Gauss-Jordan elimination under the assumption that row interchanges are not needed.  The following subroutine uses row operations to eliminate  [Graphics:Images/GaussianJordanMod_gr_46.gif]  in column  p  for  [Graphics:Images/GaussianJordanMod_gr_47.gif].

Mathematica Subroutine (Limited Gauss-Jordan Elimination).

[Graphics:Images/GaussianJordanMod_gr_48.gif]

 

Provide for row interchanges in the Gauss-Jordan subroutine.

Add the following loop that will interchange rows and perform partial pivoting.

[Graphics:Images/GaussianJordanMod_gr_86.gif]

To make these changes, copy your subroutine GaussJordan and place a copy below. Then you can copy the above lines by selecting them and then use the "Edit" and "Copy" menus. The improved Gauss-Jordan subroutine should look like this (blue is for placement information only).  Or just use the active Mathematica code given below.

 

Algorithm II. (Complete Gauss-Jordan Elimination).  Construct the solution to the linear system  [Graphics:Images/GaussianJordanMod_gr_87.gif]  by using Gauss-Jordan elimination.  Provision is made for row interchanges if they are needed.  

Mathematica Subroutine (Complete Gauss-Jordan Elimination).

[Graphics:Images/GaussianJordanMod_gr_88.gif]

 

Use the subroutine "GaussJordan" to find the inverse of a matrix.

Theorem ( Inverse Matrix ) Assume that [Graphics:Images/GaussianJordanMod_gr_152.gif] is an [Graphics:Images/GaussianJordanMod_gr_153.gif] nonsingular matrix. Form the augmented matrix [Graphics:Images/GaussianJordanMod_gr_154.gif] of dimension  [Graphics:Images/GaussianJordanMod_gr_155.gif].  Use Gauss-Jordan elimination to reduce the matrix [Graphics:Images/GaussianJordanMod_gr_156.gif] so that the identity [Graphics:Images/GaussianJordanMod_gr_157.gif] is in the first [Graphics:Images/GaussianJordanMod_gr_158.gif] columns.  Then the inverse [Graphics:Images/GaussianJordanMod_gr_159.gif] is located in columns [Graphics:Images/GaussianJordanMod_gr_160.gif].       

 

Algorithm III. (Concise Gauss-Jordan Elimination).nbsp; Construct the solution to the linear system  [Graphics:Images/GaussianJordanMod_gr_195.gif]  by using Gauss-Jordan elimination.  The print statements are for pedagogical purposes and are not needed.  

Mathematica Subroutine (Concise Gauss-Jordan Elimination).

[Graphics:Images/GaussianJordanMod_gr_196.gif]

Remark. The Gauss-Jordan elimination method is the "heuristic" scheme found in most linear algebra textbooks.  The line of code
        [Graphics:Images/GaussianJordanMod_gr_197.gif]
divides each entry in the pivot row by its leading coefficient [Graphics:Images/GaussianJordanMod_gr_198.gif].  Is this step necessary?  A more computationally efficient algorithm will be studied which uses upper-triangularization followed by back substitution.  The partial pivoting strategy will also be employed, which reduces propagated error and instability.

 

Application to Polynomial Interpolation

    Consider a polynomial of degree n=5 that passes through the six points [Graphics:Images/GaussianJordanMod_gr_199.gif];  

        [Graphics:Images/GaussianJordanMod_gr_200.gif].

For each point  [Graphics:Images/GaussianJordanMod_gr_201.gif]  is used to an equation  [Graphics:Images/GaussianJordanMod_gr_202.gif],  which in turn are used to write a system of six equations in six unknowns  [Graphics:Images/GaussianJordanMod_gr_203.gif]  

        

[Graphics:Images/GaussianJordanMod_gr_204.gif] [Graphics:Images/GaussianJordanMod_gr_205.gif] [Graphics:Images/GaussianJordanMod_gr_206.gif] [Graphics:Images/GaussianJordanMod_gr_207.gif] [Graphics:Images/GaussianJordanMod_gr_208.gif] [Graphics:Images/GaussianJordanMod_gr_209.gif] = [Graphics:Images/GaussianJordanMod_gr_210.gif]
[Graphics:Images/GaussianJordanMod_gr_211.gif] [Graphics:Images/GaussianJordanMod_gr_212.gif] [Graphics:Images/GaussianJordanMod_gr_213.gif] [Graphics:Images/GaussianJordanMod_gr_214.gif] [Graphics:Images/GaussianJordanMod_gr_215.gif] [Graphics:Images/GaussianJordanMod_gr_216.gif] = [Graphics:Images/GaussianJordanMod_gr_217.gif]
[Graphics:Images/GaussianJordanMod_gr_218.gif] [Graphics:Images/GaussianJordanMod_gr_219.gif] [Graphics:Images/GaussianJordanMod_gr_220.gif] [Graphics:Images/GaussianJordanMod_gr_221.gif] [Graphics:Images/GaussianJordanMod_gr_222.gif] [Graphics:Images/GaussianJordanMod_gr_223.gif] = [Graphics:Images/GaussianJordanMod_gr_224.gif]
[Graphics:Images/GaussianJordanMod_gr_225.gif] [Graphics:Images/GaussianJordanMod_gr_226.gif] [Graphics:Images/GaussianJordanMod_gr_227.gif] [Graphics:Images/GaussianJordanMod_gr_228.gif] [Graphics:Images/GaussianJordanMod_gr_229.gif] [Graphics:Images/GaussianJordanMod_gr_230.gif] = [Graphics:Images/GaussianJordanMod_gr_231.gif]
[Graphics:Images/GaussianJordanMod_gr_232.gif] [Graphics:Images/GaussianJordanMod_gr_233.gif] [Graphics:Images/GaussianJordanMod_gr_234.gif] [Graphics:Images/GaussianJordanMod_gr_235.gif] [Graphics:Images/GaussianJordanMod_gr_236.gif] [Graphics:Images/GaussianJordanMod_gr_237.gif] = [Graphics:Images/GaussianJordanMod_gr_238.gif]
[Graphics:Images/GaussianJordanMod_gr_239.gif] [Graphics:Images/GaussianJordanMod_gr_240.gif] [Graphics:Images/GaussianJordanMod_gr_241.gif] [Graphics:Images/GaussianJordanMod_gr_242.gif] [Graphics:Images/GaussianJordanMod_gr_243.gif] [Graphics:Images/GaussianJordanMod_gr_244.gif] = [Graphics:Images/GaussianJordanMod_gr_245.gif]
 

The above system can be written in matrix form  MC = B  

        
[Graphics:Images/GaussianJordanMod_gr_246.gif]

Solve this linear system for the coefficients  [Graphics:Images/GaussianJordanMod_gr_247.gif]   and then construct the interpolating polynomial

        [Graphics:Images/GaussianJordanMod_gr_248.gif].  

 



Discussion Center

Discuss/
Query

Papers/
Syllabus

Feedback/
Suggestion

Yahoo
Groups

Sirfdosti
Groups

Contact
Us

MEMBERS LOGIN
  
Email ID:
Password:

  Forgot Password?
 New User? Register!

INTERVIEW EBOOK
Get 9,000+ Interview Questions & Answers in an eBook. Interview Question & Answer Guide
  • 9,000+ Interview Questions
  • All Questions Answered
  • 5 FREE Bonuses
  • Free Upgrades
GATE RESOURCES
 
  • Gate Books
  • Training Institutes
  • Gate FAQs
  • GATE BOOKS
     
  • Mechanical Engineeering Books
  • Robotics Automations Engineering Books
  • Civil Engineering Books
  • Chemical Engineering Books
  • Environmental Engineering Books
  • Electrical Engineering Books
  • Electronics Engineering Books
  • Information Technology Books
  • Software Engineering Books
  • GATE Preparation Books
  • Exciting Offers



    GATE Exam, Gate 2009, Gate Papers, Gate Preparation & Related Pages


    GATE Overview | GATE Eligibility | Structure Of GATE | GATE Training Institutes | Colleges Providing M.Tech/M.E. | GATE Score | GATE Results | PG with Scholarships | Article On GATE | GATE Forum | GATE 2009 Exclusive | GATE 2009 Syllabus | GATE Organizing Institute | Important Dates for GATE Exam | How to Apply for GATE | Discipline / Branch Codes | GATE Syllabus for Aerospace Engineering | GATE Syllabus for Agricultural Engineering | GATE Syllabus for Architecture and Planning | GATE Syllabus for Chemical Engineering | GATE Syllabus for Chemistry | GATE Syllabus for Civil Engineering | GATE Syllabus for Computer Science / IT | GATE Syllabus for Electronics and Communication Engineering | GATE Syllabus for Engineering Sciences | GATE Syllabus for Geology and Geophysics | GATE Syllabus for Instrumentation Engineering | GATE Syllabus for Life Sciences | GATE Syllabus for Mathematics | GATE Syllabus for Mechanical Engineering | GATE Syllabus for Metallurgical Engineering | GATE Syllabus for Mining Engineering | GATE Syllabus for Physics | GATE Syllabus for Production and Industrial Engineering | GATE Syllabus for Pharmaceutical Sciences | GATE Syllabus for Textile Engineering and Fibre Science | GATE Preparation | GATE Pattern | GATE Tips & Tricks | GATE Compare Evaluation | GATE Sample Papers | GATE Downloads | Experts View on GATE | CEED 2009 | CEED 2009 Exam | Eligibility for CEED Exam | Application forms of CEED Exam | Important Dates of CEED Exam | Contact Address for CEED Exam | CEED Examination Centres | CEED Sample Papers | Discuss GATE | GATE Forum of OneStopGATE.com | GATE Exam Cities | Contact Details for GATE | Bank Details for GATE | GATE Miscellaneous Info | GATE FAQs | Advertisement on GATE | Contact Us on OneStopGATE |
    Copyright © 2024. One Stop Gate.com. All rights reserved Testimonials |Link To Us |Sitemap |Privacy Policy | Terms and Conditions|About Us
    Our Portals : Academic Tutorials | Best eBooksworld | Beyond Stats | City Details | Interview Questions | India Job Forum | Excellent Mobiles | Free Bangalore | Give Me The Code | Gog Logo | Free Classifieds | Jobs Assist | Interview Questions | One Stop FAQs | One Stop GATE | One Stop GRE | One Stop IAS | One Stop MBA | One Stop SAP | One Stop Testing | Web Hosting | Quick Site Kit | Sirf Dosti | Source Codes World | Tasty Food | Tech Archive | Software Testing Interview Questions | Free Online Exams | The Galz | Top Masala | Vyom | Vyom eBooks | Vyom International | Vyom Links | Vyoms | Vyom World
    C Interview Questions | C++ Interview Questions | Send Free SMS | Placement Papers | SMS Jokes | Cool Forwards | Romantic Shayari