OneStopGate.Com
OnestopGate   OnestopGate
   Sunday, November 17, 2024 Login  
OnestopGate
Home | Overview | Syllabus | Tutorials | FAQs | Downloads | Recommended Websites | Advertise | Payments | Contact Us | Forum
OneStopGate

GATE Resources
Gate Articles
Gate Books
Gate Colleges 
Gate Downloads 
Gate Faqs
Gate Jobs
Gate News 
Gate Sample Papers
Training Institutes

GATE Overview
Overview
GATE Eligibility
Structure Of GATE
GATE Coaching Centers
Colleges Providing M.Tech/M.E.
GATE Score
GATE Results
PG with Scholarships
Article On GATE
Admission Process For M.Tech/ MCP-PhD
GATE Topper 2012-13
GATE Forum




GATE 2025 Exclusive
Organizing Institute
Important Dates
How to Apply
Discipline Codes
GATE 2025 Exam Structure

GATE 2025 Syllabus
Aerospace Engg..
Agricultural Engg..
Architecture and Planning
Chemical Engg..
Chemistry
Civil Engg..
Computer Science / IT
Electronics & Communication Engg..
Electrical Engg..
Engineering Sciences
Geology and Geophysics
Instrumentation Engineering
Life Sciences
Mathematics
Mechanical Engg..
Metallurgical Engg..
Mining Engg..
Physics
Production & Industrial Engg..
Pharmaceutical Sciences
Textile Engineering and Fibre Science

GATE Study Material
Aerospace Engg..
Agricultural Engg..
Chemical Engg..
Chemistry
Civil Engg..
Computer Science / IT
Electronics & Communication Engg..
Electrical Engg..
Engineering Sciences
Instrumentation Engg..
Life Sciences
Mathematics
Mechanical Engg..
Physics
Pharmaceutical Sciences
Textile Engineering  and Fibre Science

GATE Preparation
GATE Pattern
GATE Tips N Tricks
Compare Evaluation
Sample Papers 
Gate Downloads 
Experts View

CEED 2013
CEED Exams
Eligibility
Application Forms
Important Dates
Contact Address
Examination Centres
CEED Sample Papers

Discuss GATE
GATE Forum
Exam Cities
Contact Details
Bank Details

Miscellaneous
Advertisment
Contact Us


Home » GATE Study Material » Mathematics » Numerical Analysis » Linear Equations » Linear Programming - The Simplex Method

Linear Programming - The Simplex Method

Looking for GATE Preparation Material? Join & Get here now!

** Gate 2013 Question Papers.. ** CEED 2013 Results.. ** Gate 2013 Question Papers With Solutions.. ** GATE 2013 CUT-OFFs.. ** GATE 2013 Results.. **

Linear Programming - The Simplex Method

Linear Programming - The Simplex Method

 

Background for Linear Programming

    

Linear programming is an area of linear algebra in which the goal is to maximize or minimize a linear function  [Graphics:Images/LinearProgrammingMod_gr_1.gif]  of  [Graphics:Images/LinearProgrammingMod_gr_2.gif]  variables [Graphics:Images/LinearProgrammingMod_gr_3.gif] on a region  [Graphics:Images/LinearProgrammingMod_gr_4.gif]  whose boundary is defined by linear inequalities and equations.  In this context, when we speak of a "linear function of [Graphics:Images/LinearProgrammingMod_gr_5.gif] variables" we mean that   [Graphics:Images/LinearProgrammingMod_gr_6.gif]  has the form
    
        
[Graphics:Images/LinearProgrammingMod_gr_7.gif].

The region  [Graphics:Images/LinearProgrammingMod_gr_8.gif]  is a convex polytope.  If all the vertices of  [Graphics:Images/LinearProgrammingMod_gr_9.gif]  are known, then the maximum of  [Graphics:Images/LinearProgrammingMod_gr_10.gif] will occur at one of these vertices.  

    The solution can be constructed using the simplex method and is attributed to George Dantzig
(1914 - ) who was born in Portland, Oregon.  The simplex method starts at the origin and follows a path along the edges of the polytope to the vertex where the maximum occurs.  The history of the development of the simplex method has been summarized in the article:

An Interview with George B. Dantzig: The Father of Linear Programming  by Donald J. Albers; Constance Reid; in The College Mathematics Journal, Vol. 17, No. 4. (Sep., 1986), pp. 292-314, Jstor.  

 

Definition (Convex Polytope).  In two dimensions a convex polytope is a region that is the intersection of a finite set of half-planes (the general idea of a convex  polygon).  In three dimensions a convex polytope is solid region that is the intersection of a finite set of half-spaces (the generalized convex polyhedron).  The generalization in n dimensions is called a polytope.

 

Standard Form of the Linear Programming Problem

    The standard form of the linear programming problem is to maximize  
[Graphics:Images/LinearProgrammingMod_gr_79.gif]  of  [Graphics:Images/LinearProgrammingMod_gr_80.gif]  variables [Graphics:Images/LinearProgrammingMod_gr_81.gif].  
    
(1)     Maximize   

    
[Graphics:Images/LinearProgrammingMod_gr_82.gif]   
    
    
[Graphics:Images/LinearProgrammingMod_gr_83.gif]     where     [Graphics:Images/LinearProgrammingMod_gr_84.gif]  for  [Graphics:Images/LinearProgrammingMod_gr_85.gif].  

(2)     Subject to the m constraints  

    
[Graphics:Images/LinearProgrammingMod_gr_86.gif]     where     [Graphics:Images/LinearProgrammingMod_gr_87.gif]  for  [Graphics:Images/LinearProgrammingMod_gr_88.gif].  

(3)     With the primary constraints   [Graphics:Images/LinearProgrammingMod_gr_89.gif]   for   [Graphics:Images/LinearProgrammingMod_gr_90.gif].  

    The coefficients
[Graphics:Images/LinearProgrammingMod_gr_91.gif]  and  [Graphics:Images/LinearProgrammingMod_gr_92.gif]  can be any real number.  It is often the case that  [Graphics:Images/LinearProgrammingMod_gr_93.gif],  but the cases  [Graphics:Images/LinearProgrammingMod_gr_94.gif]or  [Graphics:Images/LinearProgrammingMod_gr_95.gif]  can occur.

 

Setting up the Extended Simplex Tableau

    For computational purposes, we construct a tableau. The first
[Graphics:Images/LinearProgrammingMod_gr_96.gif] rows consist of the coefficients matrix [Graphics:Images/LinearProgrammingMod_gr_97.gif], the identity matrix [Graphics:Images/LinearProgrammingMod_gr_98.gif] and the column vector [Graphics:Images/LinearProgrammingMod_gr_99.gif]. In the [Graphics:Images/LinearProgrammingMod_gr_100.gif]-row of the tableau the first [Graphics:Images/LinearProgrammingMod_gr_101.gif] elements are the coefficients  [Graphics:Images/LinearProgrammingMod_gr_102.gif],  which are called the coefficients of the augmented objective equation.  The remainder of the bottom row is filled in with zeros.  An extra column on the right will be used in the decision process in solving for the variables.

    

[Graphics:Images/LinearProgrammingMod_gr_103.gif]  
[Graphics:Images/LinearProgrammingMod_gr_104.gif]
Column
 
[Graphics:Images/LinearProgrammingMod_gr_105.gif]
[Graphics:Images/LinearProgrammingMod_gr_106.gif]
[Graphics:Images/LinearProgrammingMod_gr_107.gif]
[Graphics:Images/LinearProgrammingMod_gr_108.gif]
[Graphics:Images/LinearProgrammingMod_gr_109.gif]
[Graphics:Images/LinearProgrammingMod_gr_110.gif]
 

 

    

    The non-negative variable [Graphics:Images/LinearProgrammingMod_gr_111.gif] is called a slack variable and is the amount that the linear combination  [Graphics:Images/LinearProgrammingMod_gr_112.gif]  falls short of the bound  [Graphics:Images/LinearProgrammingMod_gr_113.gif].  It's purpose is to change an inequality to an equation, i.e. we have

(4)    [Graphics:Images/LinearProgrammingMod_gr_114.gif]   for rows   [Graphics:Images/LinearProgrammingMod_gr_115.gif] in the tableau.    

    The goal of the simplex method is to exchange some of the columns of 1's and 0's of the slack variables into columns of 1's and 0's of the decision variables.  

A explanation of this tableau is given in the link below.

Simplex Method Details  

 

Algorithm (Simplex Method).  To find the minimum of  [Graphics:Images/LinearProgrammingMod_gr_116.gif]  over the convex polytope [Graphics:Images/LinearProgrammingMod_gr_117.gif].  

(i)    Use non-negative slack variables  [Graphics:Images/LinearProgrammingMod_gr_118.gif]  and form a system of equations and the initial tableau.

(ii)   Determine the exchange variable, the pivot row and pivotal element.  
       The exchange variable
[Graphics:Images/LinearProgrammingMod_gr_119.gif] is chosen in the pivot column [Graphics:Images/LinearProgrammingMod_gr_120.gif] where  [Graphics:Images/LinearProgrammingMod_gr_121.gif]  is the smallest negative coefficient.  
       The pivot row  [Graphics:Images/LinearProgrammingMod_gr_122.gif]  is chosen where the minimum ratio [Graphics:Images/LinearProgrammingMod_gr_123.gif]occurs for all rows with  [Graphics:Images/LinearProgrammingMod_gr_124.gif].  
       The pivot element is
[Graphics:Images/LinearProgrammingMod_gr_125.gif].

(iii)  Perform row operations to zero out elements in the pivotal column [Graphics:Images/LinearProgrammingMod_gr_126.gif] above and below the pivot row [Graphics:Images/LinearProgrammingMod_gr_127.gif].

(iv)  Repeat steps (ii) and (iii) until there are no negative coefficients  [Graphics:Images/LinearProgrammingMod_gr_128.gif]  in the bottom row.  

 

Mathematica Subroutines (Simplex Method).  To find the minimum of  [Graphics:Images/LinearProgrammingMod_gr_129.gif]  over the convex polytope [Graphics:Images/LinearProgrammingMod_gr_130.gif].  
Activate the following four cells.

[Graphics:Images/LinearProgrammingMod_gr_131.gif]
[Graphics:Images/LinearProgrammingMod_gr_132.gif]
[Graphics:Images/LinearProgrammingMod_gr_133.gif]
[Graphics:Images/LinearProgrammingMod_gr_134.gif]

Warning.  The above subroutines are for pedagogical purposes to illustrate the simplex method.  They will not work for certain cases when  [Graphics:Images/LinearProgrammingMod_gr_135.gif],  and in cases where more than one coefficient   [Graphics:Images/LinearProgrammingMod_gr_136.gif]  is set equal to zero in one step of the iteration.   For complicated problems one of the Mathematica subroutines:  ConstrainedMin, ConstrainedMax, or LinearProgramming  should be used.



Discussion Center

Discuss/
Query

Papers/
Syllabus

Feedback/
Suggestion

Yahoo
Groups

Sirfdosti
Groups

Contact
Us

MEMBERS LOGIN
  
Email ID:
Password:

  Forgot Password?
 New User? Register!

INTERVIEW EBOOK
Get 9,000+ Interview Questions & Answers in an eBook. Interview Question & Answer Guide
  • 9,000+ Interview Questions
  • All Questions Answered
  • 5 FREE Bonuses
  • Free Upgrades
GATE RESOURCES
 
  • Gate Books
  • Training Institutes
  • Gate FAQs
  • GATE BOOKS
     
  • Mechanical Engineeering Books
  • Robotics Automations Engineering Books
  • Civil Engineering Books
  • Chemical Engineering Books
  • Environmental Engineering Books
  • Electrical Engineering Books
  • Electronics Engineering Books
  • Information Technology Books
  • Software Engineering Books
  • GATE Preparation Books
  • Exciting Offers



    GATE Exam, Gate 2009, Gate Papers, Gate Preparation & Related Pages


    GATE Overview | GATE Eligibility | Structure Of GATE | GATE Training Institutes | Colleges Providing M.Tech/M.E. | GATE Score | GATE Results | PG with Scholarships | Article On GATE | GATE Forum | GATE 2009 Exclusive | GATE 2009 Syllabus | GATE Organizing Institute | Important Dates for GATE Exam | How to Apply for GATE | Discipline / Branch Codes | GATE Syllabus for Aerospace Engineering | GATE Syllabus for Agricultural Engineering | GATE Syllabus for Architecture and Planning | GATE Syllabus for Chemical Engineering | GATE Syllabus for Chemistry | GATE Syllabus for Civil Engineering | GATE Syllabus for Computer Science / IT | GATE Syllabus for Electronics and Communication Engineering | GATE Syllabus for Engineering Sciences | GATE Syllabus for Geology and Geophysics | GATE Syllabus for Instrumentation Engineering | GATE Syllabus for Life Sciences | GATE Syllabus for Mathematics | GATE Syllabus for Mechanical Engineering | GATE Syllabus for Metallurgical Engineering | GATE Syllabus for Mining Engineering | GATE Syllabus for Physics | GATE Syllabus for Production and Industrial Engineering | GATE Syllabus for Pharmaceutical Sciences | GATE Syllabus for Textile Engineering and Fibre Science | GATE Preparation | GATE Pattern | GATE Tips & Tricks | GATE Compare Evaluation | GATE Sample Papers | GATE Downloads | Experts View on GATE | CEED 2009 | CEED 2009 Exam | Eligibility for CEED Exam | Application forms of CEED Exam | Important Dates of CEED Exam | Contact Address for CEED Exam | CEED Examination Centres | CEED Sample Papers | Discuss GATE | GATE Forum of OneStopGATE.com | GATE Exam Cities | Contact Details for GATE | Bank Details for GATE | GATE Miscellaneous Info | GATE FAQs | Advertisement on GATE | Contact Us on OneStopGATE |
    Copyright © 2024. One Stop Gate.com. All rights reserved Testimonials |Link To Us |Sitemap |Privacy Policy | Terms and Conditions|About Us
    Our Portals : Academic Tutorials | Best eBooksworld | Beyond Stats | City Details | Interview Questions | India Job Forum | Excellent Mobiles | Free Bangalore | Give Me The Code | Gog Logo | Free Classifieds | Jobs Assist | Interview Questions | One Stop FAQs | One Stop GATE | One Stop GRE | One Stop IAS | One Stop MBA | One Stop SAP | One Stop Testing | Web Hosting | Quick Site Kit | Sirf Dosti | Source Codes World | Tasty Food | Tech Archive | Software Testing Interview Questions | Free Online Exams | The Galz | Top Masala | Vyom | Vyom eBooks | Vyom International | Vyom Links | Vyoms | Vyom World
    C Interview Questions | C++ Interview Questions | Send Free SMS | Placement Papers | SMS Jokes | Cool Forwards | Romantic Shayari