OneStopGate.Com
OnestopGate   OnestopGate
   Sunday, November 17, 2024 Login  
OnestopGate
Home | Overview | Syllabus | Tutorials | FAQs | Downloads | Recommended Websites | Advertise | Payments | Contact Us | Forum
OneStopGate

GATE Resources
Gate Articles
Gate Books
Gate Colleges 
Gate Downloads 
Gate Faqs
Gate Jobs
Gate News 
Gate Sample Papers
Training Institutes

GATE Overview
Overview
GATE Eligibility
Structure Of GATE
GATE Coaching Centers
Colleges Providing M.Tech/M.E.
GATE Score
GATE Results
PG with Scholarships
Article On GATE
Admission Process For M.Tech/ MCP-PhD
GATE Topper 2012-13
GATE Forum




GATE 2025 Exclusive
Organizing Institute
Important Dates
How to Apply
Discipline Codes
GATE 2025 Exam Structure

GATE 2025 Syllabus
Aerospace Engg..
Agricultural Engg..
Architecture and Planning
Chemical Engg..
Chemistry
Civil Engg..
Computer Science / IT
Electronics & Communication Engg..
Electrical Engg..
Engineering Sciences
Geology and Geophysics
Instrumentation Engineering
Life Sciences
Mathematics
Mechanical Engg..
Metallurgical Engg..
Mining Engg..
Physics
Production & Industrial Engg..
Pharmaceutical Sciences
Textile Engineering and Fibre Science

GATE Study Material
Aerospace Engg..
Agricultural Engg..
Chemical Engg..
Chemistry
Civil Engg..
Computer Science / IT
Electronics & Communication Engg..
Electrical Engg..
Engineering Sciences
Instrumentation Engg..
Life Sciences
Mathematics
Mechanical Engg..
Physics
Pharmaceutical Sciences
Textile Engineering  and Fibre Science

GATE Preparation
GATE Pattern
GATE Tips N Tricks
Compare Evaluation
Sample Papers 
Gate Downloads 
Experts View

CEED 2013
CEED Exams
Eligibility
Application Forms
Important Dates
Contact Address
Examination Centres
CEED Sample Papers

Discuss GATE
GATE Forum
Exam Cities
Contact Details
Bank Details

Miscellaneous
Advertisment
Contact Us


Brent's Method

Looking for GATE Preparation Material? Join & Get here now!

** Gate 2013 Question Papers.. ** CEED 2013 Results.. ** Gate 2013 Question Papers With Solutions.. ** GATE 2013 CUT-OFFs.. ** GATE 2013 Results.. **

Brent's Method

Brent's Method

Background

We start by reviewing the secant method and then extend it to the inverse quadratic interpolation method.Mueller's proposed a method using successive bisection and inverse quadratic interpolation which was extended by Brent's and others.It uses a combination of the bisection, regula falsi, and inverse quadratic interpolation methods.

Theorem ( Secant Method ).Assume that [Graphics:Images/BrentMethodMod_gr_1.gif] and there exists a number [Graphics:Images/BrentMethodMod_gr_2.gif], where [Graphics:Images/BrentMethodMod_gr_3.gif].If[Graphics:Images/BrentMethodMod_gr_4.gif], then there exists a [Graphics:Images/BrentMethodMod_gr_5.gif] such that the sequence [Graphics:Images/BrentMethodMod_gr_6.gif] defined by the iteration

[Graphics:Images/BrentMethodMod_gr_7.gif]

[Graphics:Images/BrentMethodMod_gr_8.gif]

for[Graphics:Images/BrentMethodMod_gr_9.gif]will converge to [Graphics:Images/BrentMethodMod_gr_10.gif] for certain initial approximations[Graphics:Images/BrentMethodMod_gr_11.gif].

Algorithm ( Secant Method ).Find a root of[Graphics:Images/BrentMethodMod_gr_12.gif]given two initial approximations[Graphics:Images/BrentMethodMod_gr_13.gif]using the iteration

[Graphics:Images/BrentMethodMod_gr_14.gif]for[Graphics:Images/BrentMethodMod_gr_15.gif].

Mathematica Subroutine (Secant Method).

[Graphics:Images/BrentMethodMod_gr_16.gif]

Theorem (Inverse Quadratic Method).Assume that [Graphics:Images/BrentMethodMod_gr_68.gif] and there exists a number [Graphics:Images/BrentMethodMod_gr_69.gif], where [Graphics:Images/BrentMethodMod_gr_70.gif].If [Graphics:Images/BrentMethodMod_gr_71.gif], then there exists a [Graphics:Images/BrentMethodMod_gr_72.gif] such that the sequence [Graphics:Images/BrentMethodMod_gr_73.gif] defined by the iteration

[Graphics:Images/BrentMethodMod_gr_74.gif]

[Graphics:Images/BrentMethodMod_gr_75.gif]

for[Graphics:Images/BrentMethodMod_gr_76.gif]will converge to [Graphics:Images/BrentMethodMod_gr_77.gif] for certain initial approximations[Graphics:Images/BrentMethodMod_gr_78.gif].

Algorithm ( Inverse Quadratic Method ).Find a root of[Graphics:Images/BrentMethodMod_gr_79.gif]given three initial approximations[Graphics:Images/BrentMethodMod_gr_80.gif]using the iteration

[Graphics:Images/BrentMethodMod_gr_81.gif]

for[Graphics:Images/BrentMethodMod_gr_82.gif].

Mathematica Subroutine (Inverse Quadratic Method).

[Graphics:Images/BrentMethodMod_gr_83.gif]

The computation of[Graphics:Images/BrentMethodMod_gr_84.gif]is seen to require 12 function evaluations (because [Graphics:Images/BrentMethodMod_gr_85.gif] occurs 13 times).This number can be reduced to 3 function evaluations per iteration by using the following "algebraic trick."

Algorithm ( Inverse Quadratic Method ).Find a root of[Graphics:Images/BrentMethodMod_gr_86.gif]given three initial approximations[Graphics:Images/BrentMethodMod_gr_87.gif]iteration.When the code in the above subroutine is executed the computation of[Graphics:Images/BrentMethodMod_gr_88.gif]is seen to require 13 function evaluations.(because [Graphics:Images/BrentMethodMod_gr_89.gif] occurs 13 times).The number of function evaluations can by using the following scheme.

[Graphics:Images/BrentMethodMod_gr_90.gif]

for[Graphics:Images/BrentMethodMod_gr_91.gif].

Mathematica Subroutine (Inverse Quadratic Method).Efficient version that uses only 3 function evaluations per iteration.

[Graphics:Images/BrentMethodMod_gr_92.gif]

More Background

We will now review some root bracketing methods.The regula falsi method usually converge faster than the bisection method bisection.However, examples can be found when the bisection method converges faster.To speed things up, Brent included inverse quadratic interpolation and his method combines the root bracketing methods: bisection, regula falsi; and inverse quadratic interpolation methods.

Theorem ( Bisection Method ). Assume that[Graphics:Images/BrentMethodMod_gr_172.gif] and that there exists a number [Graphics:Images/BrentMethodMod_gr_173.gif] such that [Graphics:Images/BrentMethodMod_gr_174.gif].If[Graphics:Images/BrentMethodMod_gr_175.gif] have opposite signs, and [Graphics:Images/BrentMethodMod_gr_176.gif] represents the sequence of midpoints generated by the bisection process, then

[Graphics:Images/BrentMethodMod_gr_177.gif]for[Graphics:Images/BrentMethodMod_gr_178.gif],

and the sequence [Graphics:Images/BrentMethodMod_gr_179.gif] converges to the zero[Graphics:Images/BrentMethodMod_gr_180.gif].

That is,[Graphics:Images/BrentMethodMod_gr_181.gif].

Mathematica Subroutine (Bisection Method).

[Graphics:Images/BrentMethodMod_gr_182.gif]

Theorem ( Regula Falsi Method ). Assume that[Graphics:Images/BrentMethodMod_gr_183.gif] and that there exists a number [Graphics:Images/BrentMethodMod_gr_184.gif] such that [Graphics:Images/BrentMethodMod_gr_185.gif].
If[Graphics:Images/BrentMethodMod_gr_186.gif] have opposite signs, and

[Graphics:Images/BrentMethodMod_gr_187.gif]

represents the sequence of points generated by the Regula Falsi process, then the sequence [Graphics:Images/BrentMethodMod_gr_188.gif] converges to the zero[Graphics:Images/BrentMethodMod_gr_189.gif].

That is,[Graphics:Images/BrentMethodMod_gr_190.gif].

Mathematica Subroutine (Regula Falsi Method).

[Graphics:Images/BrentMethodMod_gr_191.gif]

Brent's Method

The secant method and inverse quadratic interpolation method can be used to find a root[Graphics:Images/BrentMethodMod_gr_192.gif]of the function[Graphics:Images/BrentMethodMod_gr_193.gif].Combining these methods and making variations which include inverse interpolation have been presented by A. van Wijngaarden, J. A. Zonneveld and E. W. Dijkstra (1963), J. H. Wilkinson (1967), G. Peters and J. H. Wilkinson (1969), T. J. Dekker (1969) and were improved by R. P. Brent (1971).

Brent's method can be used to find a root[Graphics:Images/BrentMethodMod_gr_194.gif]provided that[Graphics:Images/BrentMethodMod_gr_195.gif]have opposite signs.At a typical step we have three points[Graphics:Images/BrentMethodMod_gr_196.gif]such that[Graphics:Images/BrentMethodMod_gr_197.gif],and the pointamay coincide with the pointc.The points[Graphics:Images/BrentMethodMod_gr_198.gif]change during the algorithm, and the root always lies in either[Graphics:Images/BrentMethodMod_gr_199.gif]or[Graphics:Images/BrentMethodMod_gr_200.gif].The valuebis the best approximation to the root andais the previous value ofb.The method uses a combination of three methods: bisection, regula falsi, and inverse quadratic interpolation.It is difficult to see how each of these ideas are incorporated into the subroutine.To assist with locating the lines that must be used in logical sequence some of the lines have been color coded.But some lines are used in more than one method so look carefully at the subroutine and the portions listed below.

The Brent subroutine will find the root[Graphics:Images/BrentMethodMod_gr_201.gif]of the function[Graphics:Images/BrentMethodMod_gr_202.gif]in the interval[Graphics:Images/BrentMethodMod_gr_203.gif]to within a tolerance[Graphics:Images/BrentMethodMod_gr_204.gif]where[Graphics:Images/BrentMethodMod_gr_205.gif]is a positive tolerance and[Graphics:Images/BrentMethodMod_gr_206.gif].

Algorithm (Brent's Method).Find a rootpof[Graphics:Images/BrentMethodMod_gr_207.gif]given initial bracketing interval[Graphics:Images/BrentMethodMod_gr_208.gif]where[Graphics:Images/BrentMethodMod_gr_209.gif] must have opposite signs.At a typical step we have three points[Graphics:Images/BrentMethodMod_gr_210.gif]such that[Graphics:Images/BrentMethodMod_gr_211.gif],andamay coincide withc.The points [Graphics:Images/BrentMethodMod_gr_212.gif]change during the algorithm, and the root always lies in either[Graphics:Images/BrentMethodMod_gr_213.gif]or[Graphics:Images/BrentMethodMod_gr_214.gif].The valuebis the best approximation to the root andais the previous value ofb.The iteration uses a combination oftechniques:

(i)The Bisection Method

[Graphics:Images/BrentMethodMod_gr_215.gif],or

(ii)Regula Falsi Method

[Graphics:Images/BrentMethodMod_gr_216.gif],or

(iii) Quadratic Interpolation

[Graphics:Images/BrentMethodMod_gr_217.gif]

Mathematica Subroutine (Brent's Method).

[Graphics:Images/BrentMethodMod_gr_218.gif]



Discussion Center

Discuss/
Query

Papers/
Syllabus

Feedback/
Suggestion

Yahoo
Groups

Sirfdosti
Groups

Contact
Us

MEMBERS LOGIN
  
Email ID:
Password:

  Forgot Password?
 New User? Register!

INTERVIEW EBOOK
Get 9,000+ Interview Questions & Answers in an eBook. Interview Question & Answer Guide
  • 9,000+ Interview Questions
  • All Questions Answered
  • 5 FREE Bonuses
  • Free Upgrades
GATE RESOURCES
 
  • Gate Books
  • Training Institutes
  • Gate FAQs
  • GATE BOOKS
     
  • Mechanical Engineeering Books
  • Robotics Automations Engineering Books
  • Civil Engineering Books
  • Chemical Engineering Books
  • Environmental Engineering Books
  • Electrical Engineering Books
  • Electronics Engineering Books
  • Information Technology Books
  • Software Engineering Books
  • GATE Preparation Books
  • Exciting Offers



    GATE Exam, Gate 2009, Gate Papers, Gate Preparation & Related Pages


    GATE Overview | GATE Eligibility | Structure Of GATE | GATE Training Institutes | Colleges Providing M.Tech/M.E. | GATE Score | GATE Results | PG with Scholarships | Article On GATE | GATE Forum | GATE 2009 Exclusive | GATE 2009 Syllabus | GATE Organizing Institute | Important Dates for GATE Exam | How to Apply for GATE | Discipline / Branch Codes | GATE Syllabus for Aerospace Engineering | GATE Syllabus for Agricultural Engineering | GATE Syllabus for Architecture and Planning | GATE Syllabus for Chemical Engineering | GATE Syllabus for Chemistry | GATE Syllabus for Civil Engineering | GATE Syllabus for Computer Science / IT | GATE Syllabus for Electronics and Communication Engineering | GATE Syllabus for Engineering Sciences | GATE Syllabus for Geology and Geophysics | GATE Syllabus for Instrumentation Engineering | GATE Syllabus for Life Sciences | GATE Syllabus for Mathematics | GATE Syllabus for Mechanical Engineering | GATE Syllabus for Metallurgical Engineering | GATE Syllabus for Mining Engineering | GATE Syllabus for Physics | GATE Syllabus for Production and Industrial Engineering | GATE Syllabus for Pharmaceutical Sciences | GATE Syllabus for Textile Engineering and Fibre Science | GATE Preparation | GATE Pattern | GATE Tips & Tricks | GATE Compare Evaluation | GATE Sample Papers | GATE Downloads | Experts View on GATE | CEED 2009 | CEED 2009 Exam | Eligibility for CEED Exam | Application forms of CEED Exam | Important Dates of CEED Exam | Contact Address for CEED Exam | CEED Examination Centres | CEED Sample Papers | Discuss GATE | GATE Forum of OneStopGATE.com | GATE Exam Cities | Contact Details for GATE | Bank Details for GATE | GATE Miscellaneous Info | GATE FAQs | Advertisement on GATE | Contact Us on OneStopGATE |
    Copyright © 2024. One Stop Gate.com. All rights reserved Testimonials |Link To Us |Sitemap |Privacy Policy | Terms and Conditions|About Us
    Our Portals : Academic Tutorials | Best eBooksworld | Beyond Stats | City Details | Interview Questions | India Job Forum | Excellent Mobiles | Free Bangalore | Give Me The Code | Gog Logo | Free Classifieds | Jobs Assist | Interview Questions | One Stop FAQs | One Stop GATE | One Stop GRE | One Stop IAS | One Stop MBA | One Stop SAP | One Stop Testing | Web Hosting | Quick Site Kit | Sirf Dosti | Source Codes World | Tasty Food | Tech Archive | Software Testing Interview Questions | Free Online Exams | The Galz | Top Masala | Vyom | Vyom eBooks | Vyom International | Vyom Links | Vyoms | Vyom World
    C Interview Questions | C++ Interview Questions | Send Free SMS | Placement Papers | SMS Jokes | Cool Forwards | Romantic Shayari