OneStopGate.Com
OnestopGate   OnestopGate
   Sunday, November 17, 2024 Login  
OnestopGate
Home | Overview | Syllabus | Tutorials | FAQs | Downloads | Recommended Websites | Advertise | Payments | Contact Us | Forum
OneStopGate

GATE Resources
Gate Articles
Gate Books
Gate Colleges 
Gate Downloads 
Gate Faqs
Gate Jobs
Gate News 
Gate Sample Papers
Training Institutes

GATE Overview
Overview
GATE Eligibility
Structure Of GATE
GATE Coaching Centers
Colleges Providing M.Tech/M.E.
GATE Score
GATE Results
PG with Scholarships
Article On GATE
Admission Process For M.Tech/ MCP-PhD
GATE Topper 2012-13
GATE Forum




GATE 2025 Exclusive
Organizing Institute
Important Dates
How to Apply
Discipline Codes
GATE 2025 Exam Structure

GATE 2025 Syllabus
Aerospace Engg..
Agricultural Engg..
Architecture and Planning
Chemical Engg..
Chemistry
Civil Engg..
Computer Science / IT
Electronics & Communication Engg..
Electrical Engg..
Engineering Sciences
Geology and Geophysics
Instrumentation Engineering
Life Sciences
Mathematics
Mechanical Engg..
Metallurgical Engg..
Mining Engg..
Physics
Production & Industrial Engg..
Pharmaceutical Sciences
Textile Engineering and Fibre Science

GATE Study Material
Aerospace Engg..
Agricultural Engg..
Chemical Engg..
Chemistry
Civil Engg..
Computer Science / IT
Electronics & Communication Engg..
Electrical Engg..
Engineering Sciences
Instrumentation Engg..
Life Sciences
Mathematics
Mechanical Engg..
Physics
Pharmaceutical Sciences
Textile Engineering  and Fibre Science

GATE Preparation
GATE Pattern
GATE Tips N Tricks
Compare Evaluation
Sample Papers 
Gate Downloads 
Experts View

CEED 2013
CEED Exams
Eligibility
Application Forms
Important Dates
Contact Address
Examination Centres
CEED Sample Papers

Discuss GATE
GATE Forum
Exam Cities
Contact Details
Bank Details

Miscellaneous
Advertisment
Contact Us


Home » GATE Study Material » Mathematics » Numerical Analysis » Nonlinear Equations » Fixed Point Iteration and Newton's Method in 2D and 3D

Fixed Point Iteration and Newton's Method in 2D and 3D

Looking for GATE Preparation Material? Join & Get here now!

** Gate 2013 Question Papers.. ** CEED 2013 Results.. ** Gate 2013 Question Papers With Solutions.. ** GATE 2013 CUT-OFFs.. ** GATE 2013 Results.. **

Fixed Point Iteration and Newton's Method in 2D and 3D

Fixed Point Iteration and Newton's Method in 2D and 3D

Background

Iterative techniques will now be introduced that extend the fixed point and Newton methods for finding a root of an equation.We desire to have a method for finding a solution for the system of nonlinear equations

[Graphics:Images/NewtonSystemMod_gr_1.gif]
(1)
[Graphics:Images/NewtonSystemMod_gr_2.gif].

Each equation in (1) implicitly defines a curve in the plane and we want to find their points of intersection.Our first method will be be fixed point iteration and the second one will be Newton's method.

Definition (Jacobian Matrix).Assume that [Graphics:Images/NewtonSystemMod_gr_3.gif] are functions of the independent variables [Graphics:Images/NewtonSystemMod_gr_4.gif], then their Jacobian matrix[Graphics:Images/NewtonSystemMod_gr_5.gif] is

[Graphics:Images/NewtonSystemMod_gr_6.gif].

Similarly, if[Graphics:Images/NewtonSystemMod_gr_7.gif] are functions of the independent variables[Graphics:Images/NewtonSystemMod_gr_8.gif], then their Jacobian matrix[Graphics:Images/NewtonSystemMod_gr_9.gif] is

[Graphics:Images/NewtonSystemMod_gr_10.gif].

Generalized Differential

For a function of several variables, the differential is used to show how changes of the independent variables affect the change in the dependent variables. Suppose that we have

[Graphics:Images/NewtonSystemMod_gr_11.gif]

[Graphics:Images/NewtonSystemMod_gr_12.gif]

[Graphics:Images/NewtonSystemMod_gr_13.gif]

Suppose that the values of these functions in are known at the point [Graphics:Images/NewtonSystemMod_gr_14.gif] and we wish to predict their value at a nearby point [Graphics:Images/NewtonSystemMod_gr_15.gif].Let[Graphics:Images/NewtonSystemMod_gr_16.gif],denote differential changes in the dependent variables and , and[Graphics:Images/NewtonSystemMod_gr_17.gif]denote differential changes in the independent variables. These changes obey the relationships

[Graphics:Images/NewtonSystemMod_gr_18.gif],

[Graphics:Images/NewtonSystemMod_gr_19.gif],

[Graphics:Images/NewtonSystemMod_gr_20.gif].

If vector notation is used, then this can be compactly written by using the Jacobian matrix. The function changes aredFand the changes in the variables are denoteddX.

[Graphics:Images/NewtonSystemMod_gr_21.gif]
or
[Graphics:Images/NewtonSystemMod_gr_22.gif].

Convergence near a Fixed Point

In solving for solutions of a system of equations, iteration is used.We now turn to the study of sufficient conditions which will guarantee convergence.

Definition (Fixed Point).A fixed point for the system of two equations

[Graphics:Images/NewtonSystemMod_gr_23.gif],
[Graphics:Images/NewtonSystemMod_gr_24.gif].

is a point [Graphics:Images/NewtonSystemMod_gr_25.gif] such that [Graphics:Images/NewtonSystemMod_gr_26.gif].Similarly, in three dimensions a fixed point for the system of three equations

[Graphics:Images/NewtonSystemMod_gr_27.gif],
[Graphics:Images/NewtonSystemMod_gr_28.gif],
[Graphics:Images/NewtonSystemMod_gr_29.gif].

is a point [Graphics:Images/NewtonSystemMod_gr_30.gif] such that [Graphics:Images/NewtonSystemMod_gr_31.gif].

Definition (Fixed Point Iteration).For a system of two equations, fixed point iteration is

[Graphics:Images/NewtonSystemMod_gr_32.gif],and
[Graphics:Images/NewtonSystemMod_gr_33.gif],[Graphics:Images/NewtonSystemMod_gr_34.gif]


Similarly, for a system of three equations, fixed point iteration is

[Graphics:Images/NewtonSystemMod_gr_35.gif]
[Graphics:Images/NewtonSystemMod_gr_36.gif],and
[Graphics:Images/NewtonSystemMod_gr_37.gif],[Graphics:Images/NewtonSystemMod_gr_38.gif]

Theorem (Fixed-Point Iteration).Assume that all the functions and their first partial derivatives are continuous on a region that contains the fixed point [Graphics:Images/NewtonSystemMod_gr_39.gif] or [Graphics:Images/NewtonSystemMod_gr_40.gif], respectively.If the starting point is chosen sufficiently close to the fixed point, then one of the following cases apply.

Case (i)Two dimensions.If [Graphics:Images/NewtonSystemMod_gr_41.gif] is sufficiently close to [Graphics:Images/NewtonSystemMod_gr_42.gif] and if[Graphics:Images/NewtonSystemMod_gr_43.gif]

[Graphics:Images/NewtonSystemMod_gr_44.gif],

[Graphics:Images/NewtonSystemMod_gr_45.gif],

then fixed point iteration will converge to the fixed point [Graphics:Images/NewtonSystemMod_gr_46.gif].


Case (ii)Three dimensions.If [Graphics:Images/NewtonSystemMod_gr_47.gif] is sufficiently close to [Graphics:Images/NewtonSystemMod_gr_48.gif] and if

[Graphics:Images/NewtonSystemMod_gr_49.gif] + [Graphics:Images/NewtonSystemMod_gr_50.gif] + [Graphics:Images/NewtonSystemMod_gr_51.gif] < 1,

[Graphics:Images/NewtonSystemMod_gr_52.gif] + [Graphics:Images/NewtonSystemMod_gr_53.gif] + [Graphics:Images/NewtonSystemMod_gr_54.gif] < 1,

[Graphics:Images/NewtonSystemMod_gr_55.gif] + [Graphics:Images/NewtonSystemMod_gr_56.gif] + [Graphics:Images/NewtonSystemMod_gr_57.gif] < 1,

then fixed point iteration will converge to the fixed point [Graphics:Images/NewtonSystemMod_gr_58.gif].

If these conditions are not met, the iteration might diverge, which is usually the case.

ProofNonlinear SystemsNonlinear Systems

Algorithm (Fixed Point Iteration for Non-Linear Systems) In two dimensions, solve the non-linear fixed point system
[Graphics:Images/NewtonSystemMod_gr_59.gif]
given one initial approximation [Graphics:Images/NewtonSystemMod_gr_60.gif], and generating a sequence [Graphics:Images/NewtonSystemMod_gr_61.gif] which converges to the solution[Graphics:Images/NewtonSystemMod_gr_62.gif],i.e.
[Graphics:Images/NewtonSystemMod_gr_63.gif]

Algorithm (Fixed Point Iteration for Non-Linear Systems)In three dimensions, solve the non-linear fixed point system
[Graphics:Images/NewtonSystemMod_gr_64.gif]
given one initial approximation [Graphics:Images/NewtonSystemMod_gr_65.gif], and generating a sequence [Graphics:Images/NewtonSystemMod_gr_66.gif] which converges to the solution[Graphics:Images/NewtonSystemMod_gr_67.gif],i.e.
[Graphics:Images/NewtonSystemMod_gr_68.gif]

Algorithm (Fixed Point Iteration for Non-Linear Systems)Solve the non-linear fixed point system

[Graphics:Images/NewtonSystemMod_gr_69.gif],

given one initial approximation [Graphics:Images/NewtonSystemMod_gr_70.gif], and generating a sequence [Graphics:Images/NewtonSystemMod_gr_71.gif] which converges to the solution[Graphics:Images/NewtonSystemMod_gr_72.gif],

[Graphics:Images/NewtonSystemMod_gr_73.gif].

Remark. First we give a subroutine for performing fixed point iteration.

Computer ProgramsNonlinear SystemsNonlinear Systems

Mathematica Subroutine (Fixed Point Iteration in n-Dimensions).

Example 1.Use fixed point iteration to find a solution to the nonlinear system
[Graphics:Images/NewtonSystemMod_gr_75.gif]
Solution 1.

Newton's Method for Nonlinear Systems

We now outline the derivation of Newton�s method in two dimensions.Newton�s method can easily be extended to higher dimensions.Consider the system

[Graphics:Images/NewtonSystemMod_gr_186.gif]
(1)
[Graphics:Images/NewtonSystemMod_gr_187.gif]

which can be considered a transformation from thexy-plane to the uv-plane.We are interested in the behavior of this transformation near the point
[Graphics:Images/NewtonSystemMod_gr_188.gif] whose image is the point [Graphics:Images/NewtonSystemMod_gr_189.gif].If the two functions have continuous partial derivatives, then the differential can be used to write a system of linear approximations that is valid near the point [Graphics:Images/NewtonSystemMod_gr_190.gif]:

[Graphics:Images/NewtonSystemMod_gr_191.gif]

then substitute the changes
[Graphics:Images/NewtonSystemMod_gr_192.gif]for[Graphics:Images/NewtonSystemMod_gr_193.gif],respectively.Then we will have

[Graphics:Images/NewtonSystemMod_gr_194.gif]or
(2)
[Graphics:Images/NewtonSystemMod_gr_195.gif].

Consider the system (1) with u and v set equal to zero,

[Graphics:Images/NewtonSystemMod_gr_196.gif]
(3)
[Graphics:Images/NewtonSystemMod_gr_197.gif]

Suppose we are trying to find the solution [Graphics:Images/NewtonSystemMod_gr_198.gif] and we start iteration at the nearby point [Graphics:Images/NewtonSystemMod_gr_199.gif], then we can apply (2) and write

[Graphics:Images/NewtonSystemMod_gr_200.gif].

Since [Graphics:Images/NewtonSystemMod_gr_201.gif], this becomes

[Graphics:Images/NewtonSystemMod_gr_202.gif],
or

[Graphics:Images/NewtonSystemMod_gr_203.gif].

When we solve this latter equation for[Graphics:Images/NewtonSystemMod_gr_204.gif]we get[Graphics:Images/NewtonSystemMod_gr_205.gif] and the next approximation [Graphics:Images/NewtonSystemMod_gr_206.gif] is

[Graphics:Images/NewtonSystemMod_gr_207.gif]

Theorem (Newton-Raphson Method for 2-dimensional Systems).To solve the non-linear system

[Graphics:Images/NewtonSystemMod_gr_208.gif],

given one initial approximation [Graphics:Images/NewtonSystemMod_gr_209.gif], and generating a sequence [Graphics:Images/NewtonSystemMod_gr_210.gif] which converges to the solution [Graphics:Images/NewtonSystemMod_gr_211.gif],i.e.

[Graphics:Images/NewtonSystemMod_gr_212.gif].

Suppose that[Graphics:Images/NewtonSystemMod_gr_213.gif] has been obtained, use the following steps to obtain [Graphics:Images/NewtonSystemMod_gr_214.gif].

Step 1.Evaluate the function[Graphics:Images/NewtonSystemMod_gr_215.gif].

Step 2.Evaluate the Jacobian[Graphics:Images/NewtonSystemMod_gr_216.gif].

Step 3.Solve the linear system[Graphics:Images/NewtonSystemMod_gr_217.gif]for[Graphics:Images/NewtonSystemMod_gr_218.gif].

Step 4.Compute the next approximation[Graphics:Images/NewtonSystemMod_gr_219.gif].

Mathematica Subroutine (Newton's Method for Systems in n-Dimensions).



Discussion Center

Discuss/
Query

Papers/
Syllabus

Feedback/
Suggestion

Yahoo
Groups

Sirfdosti
Groups

Contact
Us

MEMBERS LOGIN
  
Email ID:
Password:

  Forgot Password?
 New User? Register!

INTERVIEW EBOOK
Get 9,000+ Interview Questions & Answers in an eBook. Interview Question & Answer Guide
  • 9,000+ Interview Questions
  • All Questions Answered
  • 5 FREE Bonuses
  • Free Upgrades
GATE RESOURCES
 
  • Gate Books
  • Training Institutes
  • Gate FAQs
  • GATE BOOKS
     
  • Mechanical Engineeering Books
  • Robotics Automations Engineering Books
  • Civil Engineering Books
  • Chemical Engineering Books
  • Environmental Engineering Books
  • Electrical Engineering Books
  • Electronics Engineering Books
  • Information Technology Books
  • Software Engineering Books
  • GATE Preparation Books
  • Exciting Offers



    GATE Exam, Gate 2009, Gate Papers, Gate Preparation & Related Pages


    GATE Overview | GATE Eligibility | Structure Of GATE | GATE Training Institutes | Colleges Providing M.Tech/M.E. | GATE Score | GATE Results | PG with Scholarships | Article On GATE | GATE Forum | GATE 2009 Exclusive | GATE 2009 Syllabus | GATE Organizing Institute | Important Dates for GATE Exam | How to Apply for GATE | Discipline / Branch Codes | GATE Syllabus for Aerospace Engineering | GATE Syllabus for Agricultural Engineering | GATE Syllabus for Architecture and Planning | GATE Syllabus for Chemical Engineering | GATE Syllabus for Chemistry | GATE Syllabus for Civil Engineering | GATE Syllabus for Computer Science / IT | GATE Syllabus for Electronics and Communication Engineering | GATE Syllabus for Engineering Sciences | GATE Syllabus for Geology and Geophysics | GATE Syllabus for Instrumentation Engineering | GATE Syllabus for Life Sciences | GATE Syllabus for Mathematics | GATE Syllabus for Mechanical Engineering | GATE Syllabus for Metallurgical Engineering | GATE Syllabus for Mining Engineering | GATE Syllabus for Physics | GATE Syllabus for Production and Industrial Engineering | GATE Syllabus for Pharmaceutical Sciences | GATE Syllabus for Textile Engineering and Fibre Science | GATE Preparation | GATE Pattern | GATE Tips & Tricks | GATE Compare Evaluation | GATE Sample Papers | GATE Downloads | Experts View on GATE | CEED 2009 | CEED 2009 Exam | Eligibility for CEED Exam | Application forms of CEED Exam | Important Dates of CEED Exam | Contact Address for CEED Exam | CEED Examination Centres | CEED Sample Papers | Discuss GATE | GATE Forum of OneStopGATE.com | GATE Exam Cities | Contact Details for GATE | Bank Details for GATE | GATE Miscellaneous Info | GATE FAQs | Advertisement on GATE | Contact Us on OneStopGATE |
    Copyright © 2024. One Stop Gate.com. All rights reserved Testimonials |Link To Us |Sitemap |Privacy Policy | Terms and Conditions|About Us
    Our Portals : Academic Tutorials | Best eBooksworld | Beyond Stats | City Details | Interview Questions | India Job Forum | Excellent Mobiles | Free Bangalore | Give Me The Code | Gog Logo | Free Classifieds | Jobs Assist | Interview Questions | One Stop FAQs | One Stop GATE | One Stop GRE | One Stop IAS | One Stop MBA | One Stop SAP | One Stop Testing | Web Hosting | Quick Site Kit | Sirf Dosti | Source Codes World | Tasty Food | Tech Archive | Software Testing Interview Questions | Free Online Exams | The Galz | Top Masala | Vyom | Vyom eBooks | Vyom International | Vyom Links | Vyoms | Vyom World
    C Interview Questions | C++ Interview Questions | Send Free SMS | Placement Papers | SMS Jokes | Cool Forwards | Romantic Shayari