OneStopGate.Com
OnestopGate   OnestopGate
   Sunday, November 17, 2024 Login  
OnestopGate
Home | Overview | Syllabus | Tutorials | FAQs | Downloads | Recommended Websites | Advertise | Payments | Contact Us | Forum
OneStopGate

GATE Resources
Gate Articles
Gate Books
Gate Colleges 
Gate Downloads 
Gate Faqs
Gate Jobs
Gate News 
Gate Sample Papers
Training Institutes

GATE Overview
Overview
GATE Eligibility
Structure Of GATE
GATE Coaching Centers
Colleges Providing M.Tech/M.E.
GATE Score
GATE Results
PG with Scholarships
Article On GATE
Admission Process For M.Tech/ MCP-PhD
GATE Topper 2012-13
GATE Forum




GATE 2025 Exclusive
Organizing Institute
Important Dates
How to Apply
Discipline Codes
GATE 2025 Exam Structure

GATE 2025 Syllabus
Aerospace Engg..
Agricultural Engg..
Architecture and Planning
Chemical Engg..
Chemistry
Civil Engg..
Computer Science / IT
Electronics & Communication Engg..
Electrical Engg..
Engineering Sciences
Geology and Geophysics
Instrumentation Engineering
Life Sciences
Mathematics
Mechanical Engg..
Metallurgical Engg..
Mining Engg..
Physics
Production & Industrial Engg..
Pharmaceutical Sciences
Textile Engineering and Fibre Science

GATE Study Material
Aerospace Engg..
Agricultural Engg..
Chemical Engg..
Chemistry
Civil Engg..
Computer Science / IT
Electronics & Communication Engg..
Electrical Engg..
Engineering Sciences
Instrumentation Engg..
Life Sciences
Mathematics
Mechanical Engg..
Physics
Pharmaceutical Sciences
Textile Engineering  and Fibre Science

GATE Preparation
GATE Pattern
GATE Tips N Tricks
Compare Evaluation
Sample Papers 
Gate Downloads 
Experts View

CEED 2013
CEED Exams
Eligibility
Application Forms
Important Dates
Contact Address
Examination Centres
CEED Sample Papers

Discuss GATE
GATE Forum
Exam Cities
Contact Details
Bank Details

Miscellaneous
Advertisment
Contact Us


Home » GATE Study Material » Mathematics » Numerical Analysis » Numerical Differentiation » Derive Numerical Differentiation Formulae

Derive Numerical Differentiation Formulae

Looking for GATE Preparation Material? Join & Get here now!

** Gate 2013 Question Papers.. ** CEED 2013 Results.. ** Gate 2013 Question Papers With Solutions.. ** GATE 2013 CUT-OFFs.. ** GATE 2013 Results.. **

Derive Numerical Differentiation Formulae

The traditional "pencil and paper" derivations for numerical differentiation formulas for[Graphics:Images/NumericalDiffFormulaeMod_gr_1.gif] and[Graphics:Images/NumericalDiffFormulaeMod_gr_2.gif] are done independently as if there was no connection among the derivations.This new approach gives a parallel development of the formulas.It requires the solution of a "linear system" that includes symbolic quantities as coefficients and constants. The power of a computer algebra system such as Mathematica is used to elegantly solve the linear system for[Graphics:Images/NumericalDiffFormulaeMod_gr_3.gif] and[Graphics:Images/NumericalDiffFormulaeMod_gr_4.gif].The extension to proofs of higher order numerical differentiation formulas for the central, forward or backward differences is easy to accomplish.The notation convention using square brackets "[ and ]" instead of parenthesis is used to make all the formulas look compatible with the Mathematica input and output that is used.

The Three Point Central Difference Formulas


Using three points [Graphics:Images/NumericalDiffFormulaeMod_gr_5.gif], [Graphics:Images/NumericalDiffFormulaeMod_gr_6.gif], and [Graphics:Images/NumericalDiffFormulaeMod_gr_7.gif]we give a parallel development of the numerical differentiation formulas for[Graphics:Images/NumericalDiffFormulaeMod_gr_8.gif] and[Graphics:Images/NumericalDiffFormulaeMod_gr_9.gif].Start with the Taylor series for [Graphics:Images/NumericalDiffFormulaeMod_gr_10.gif] expanded in powers of[Graphics:Images/NumericalDiffFormulaeMod_gr_11.gif].Terms must be included so that the remainder term is included.Using degree [Graphics:Images/NumericalDiffFormulaeMod_gr_12.gif] will suffice.

[Graphics:Images/NumericalDiffFormulaeMod_gr_13.gif] [Graphics:Images/NumericalDiffFormulaeMod_gr_14.gif]

The Mathematica notation for the remainder term is[Graphics:Images/NumericalDiffFormulaeMod_gr_15.gif].The term [Graphics:Images/NumericalDiffFormulaeMod_gr_16.gif] is removed from the series with the command Normal, and a Taylor polynomial of degree [Graphics:Images/NumericalDiffFormulaeMod_gr_17.gif] is formed.However, we must remember that the accuracy for the Taylor polynomial is[Graphics:Images/NumericalDiffFormulaeMod_gr_18.gif].

[Graphics:Images/NumericalDiffFormulaeMod_gr_19.gif] [Graphics:Images/NumericalDiffFormulaeMod_gr_20.gif]

Construct two "equations" by setting the series equal to the function at [Graphics:Images/NumericalDiffFormulaeMod_gr_21.gif].

[Graphics:Images/NumericalDiffFormulaeMod_gr_22.gif]

[Graphics:Images/NumericalDiffFormulaeMod_gr_23.gif]

We have two equations in the two unknown [Graphics:Images/NumericalDiffFormulaeMod_gr_24.gif] and[Graphics:Images/NumericalDiffFormulaeMod_gr_25.gif], and all the other quantities [Graphics:Images/NumericalDiffFormulaeMod_gr_26.gif],[Graphics:Images/NumericalDiffFormulaeMod_gr_27.gif], [Graphics:Images/NumericalDiffFormulaeMod_gr_28.gif], [Graphics:Images/NumericalDiffFormulaeMod_gr_29.gif], [Graphics:Images/NumericalDiffFormulaeMod_gr_30.gif] and[Graphics:Images/NumericalDiffFormulaeMod_gr_31.gif] are considered as constants.Now use the Mathematica command "Solve" to solve for[Graphics:Images/NumericalDiffFormulaeMod_gr_32.gif] and[Graphics:Images/NumericalDiffFormulaeMod_gr_33.gif].

[Graphics:Images/NumericalDiffFormulaeMod_gr_34.gif] [Graphics:Images/NumericalDiffFormulaeMod_gr_35.gif]

The result is not too easy to read, so we can use the commands [Graphics:Images/NumericalDiffFormulaeMod_gr_36.gif] and [Graphics:Images/NumericalDiffFormulaeMod_gr_37.gif] to manipulate the formula.In the print statements we add"[Graphics:Images/NumericalDiffFormulaeMod_gr_38.gif]"to remind us that we are using truncated infinite series.The following commands will create a nicer looking printout for the above solution.

[Graphics:Images/NumericalDiffFormulaeMod_gr_39.gif]

[Graphics:Images/NumericalDiffFormulaeMod_gr_40.gif]

Thus, we have derived the numerical differentiation formula for[Graphics:Images/NumericalDiffFormulaeMod_gr_41.gif]and[Graphics:Images/NumericalDiffFormulaeMod_gr_42.gif] and the first term in the series expansion for the remainder which involves, [Graphics:Images/NumericalDiffFormulaeMod_gr_43.gif] or[Graphics:Images/NumericalDiffFormulaeMod_gr_44.gif], respectively.Since the "numerical differentiation formulae" are "truncated" infinite series, we know that the ellipses "[Graphics:Images/NumericalDiffFormulaeMod_gr_45.gif]" means that there are infinitely many more term which are not shown.

When we do not include the"[Graphics:Images/NumericalDiffFormulaeMod_gr_46.gif]", we must evaluate the lowest order derivative in the series for the remainder at the value [Graphics:Images/NumericalDiffFormulaeMod_gr_47.gif] instead of [Graphics:Images/NumericalDiffFormulaeMod_gr_48.gif], then we can "chop off" the infinite series at the term involving[Graphics:Images/NumericalDiffFormulaeMod_gr_49.gif] or[Graphics:Images/NumericalDiffFormulaeMod_gr_50.gif], respectively.The Mathematica commandReplaceAll is used to accomplish this task.

[Graphics:Images/NumericalDiffFormulaeMod_gr_51.gif]

[Graphics:Images/NumericalDiffFormulaeMod_gr_52.gif]

We have obtained the desired numerical differentiation formulas and their remainder terms.We should mention that new in version 4.1 ofMathematica is symbolic recognition of order of approximation for divided difference formulas.We can add the term [Graphics:Images/NumericalDiffFormulaeMod_gr_53.gif] to the numerical differentiation formula term, and Mathematica will conclude that it is the derivative plus [Graphics:Images/NumericalDiffFormulaeMod_gr_54.gif].The following commands illustrate this feature of Mathematica.

[Graphics:Images/NumericalDiffFormulaeMod_gr_55.gif] [Graphics:Images/NumericalDiffFormulaeMod_gr_56.gif]

[Graphics:Images/NumericalDiffFormulaeMod_gr_57.gif] [Graphics:Images/NumericalDiffFormulaeMod_gr_58.gif]

Therefore, we have established the numerical differentiation formulas

[Graphics:Images/NumericalDiffFormulaeMod_gr_59.gif][Graphics:Images/NumericalDiffFormulaeMod_gr_60.gif][Graphics:Images/NumericalDiffFormulaeMod_gr_61.gif]
and
[Graphics:Images/NumericalDiffFormulaeMod_gr_62.gif][Graphics:Images/NumericalDiffFormulaeMod_gr_63.gif][Graphics:Images/NumericalDiffFormulaeMod_gr_64.gif]

And the corresponding formulas with the big "O" notation[Graphics:Images/NumericalDiffFormulaeMod_gr_65.gif] are

[Graphics:Images/NumericalDiffFormulaeMod_gr_66.gif][Graphics:Images/NumericalDiffFormulaeMod_gr_67.gif][Graphics:Images/NumericalDiffFormulaeMod_gr_68.gif]
and
[Graphics:Images/NumericalDiffFormulaeMod_gr_69.gif][Graphics:Images/NumericalDiffFormulaeMod_gr_70.gif][Graphics:Images/NumericalDiffFormulaeMod_gr_71.gif]

Comparison with the Traditional Derivations

The above derivation differs only slightly from the traditional derivations which also start with the two equations

[Graphics:Images/NumericalDiffFormulaeMod_gr_72.gif][Graphics:Images/NumericalDiffFormulaeMod_gr_73.gif] [Graphics:Images/NumericalDiffFormulaeMod_gr_74.gif]
(1)
[Graphics:Images/NumericalDiffFormulaeMod_gr_75.gif][Graphics:Images/NumericalDiffFormulaeMod_gr_76.gif][Graphics:Images/NumericalDiffFormulaeMod_gr_77.gif]

When deriving the numerical differentiation formula for [Graphics:Images/NumericalDiffFormulaeMod_gr_78.gif] the equations (1) are subtracted and the terms involving[Graphics:Images/NumericalDiffFormulaeMod_gr_79.gif] cancel and manipulations are used to solve for[Graphics:Images/NumericalDiffFormulaeMod_gr_80.gif] and its truncation error term.

The traditional derivation of the numerical differentiation formula for [Graphics:Images/NumericalDiffFormulaeMod_gr_81.gif] starts with the same equations (1).But this time the equations are added and the terms involving[Graphics:Images/NumericalDiffFormulaeMod_gr_82.gif] cancel and manipulations are used to solve for[Graphics:Images/NumericalDiffFormulaeMod_gr_83.gif] and its truncation error term.

There is no "big deal" made about the fact that the starting place is the same.We shall see for the higher order formulas that using the same starting place will be the key to successful computer derivations of numerical differentiation formulas.

The Five Point Central Difference Formulas

Using five points [Graphics:Images/NumericalDiffFormulaeMod_gr_84.gif], [Graphics:Images/NumericalDiffFormulaeMod_gr_85.gif], [Graphics:Images/NumericalDiffFormulaeMod_gr_86.gif],[Graphics:Images/NumericalDiffFormulaeMod_gr_87.gif], and [Graphics:Images/NumericalDiffFormulaeMod_gr_88.gif]we can give a parallel development of the numerical differentiation formulas for[Graphics:Images/NumericalDiffFormulaeMod_gr_89.gif],[Graphics:Images/NumericalDiffFormulaeMod_gr_90.gif], [Graphics:Images/NumericalDiffFormulaeMod_gr_91.gif] and [Graphics:Images/NumericalDiffFormulaeMod_gr_92.gif].Start with the Taylor series for [Graphics:Images/NumericalDiffFormulaeMod_gr_93.gif] expanded in powers of[Graphics:Images/NumericalDiffFormulaeMod_gr_94.gif].Terms must be included so that the remainder term is included.Using degree [Graphics:Images/NumericalDiffFormulaeMod_gr_95.gif] will suffice.Since the remainder term[Graphics:Images/NumericalDiffFormulaeMod_gr_96.gif], we will use Mathematica's Normal command to remove it from the series, and form the Taylor polynomial of degree [Graphics:Images/NumericalDiffFormulaeMod_gr_97.gif].

[Graphics:Images/NumericalDiffFormulaeMod_gr_98.gif] [Graphics:Images/NumericalDiffFormulaeMod_gr_99.gif]

Use five points and set up the "equations" by setting[Graphics:Images/NumericalDiffFormulaeMod_gr_100.gif] for[Graphics:Images/NumericalDiffFormulaeMod_gr_101.gif], which is automated by using Mathematica's Table command.Although the value[Graphics:Images/NumericalDiffFormulaeMod_gr_102.gif], will produce[Graphics:Images/NumericalDiffFormulaeMod_gr_103.gif] which is the boolean value True, it will do no harm when solving the set of equations and we will see that the generations of higher order formulas which require more complicated sets of equations is more easily automated with the use of a table.

[Graphics:Images/NumericalDiffFormulaeMod_gr_104.gif]

[Graphics:Images/NumericalDiffFormulaeMod_gr_105.gif]

We can consider that these are four equations in the four unknowns [Graphics:Images/NumericalDiffFormulaeMod_gr_106.gif], [Graphics:Images/NumericalDiffFormulaeMod_gr_107.gif],[Graphics:Images/NumericalDiffFormulaeMod_gr_108.gif] and [Graphics:Images/NumericalDiffFormulaeMod_gr_109.gif], and all the other quantities [Graphics:Images/NumericalDiffFormulaeMod_gr_110.gif], [Graphics:Images/NumericalDiffFormulaeMod_gr_111.gif], [Graphics:Images/NumericalDiffFormulaeMod_gr_112.gif], [Graphics:Images/NumericalDiffFormulaeMod_gr_113.gif], [Graphics:Images/NumericalDiffFormulaeMod_gr_114.gif], [Graphics:Images/NumericalDiffFormulaeMod_gr_115.gif], [Graphics:Images/NumericalDiffFormulaeMod_gr_116.gif] and[Graphics:Images/NumericalDiffFormulaeMod_gr_117.gif] are constants.Now use Mathematica to solve for [Graphics:Images/NumericalDiffFormulaeMod_gr_118.gif], [Graphics:Images/NumericalDiffFormulaeMod_gr_119.gif],[Graphics:Images/NumericalDiffFormulaeMod_gr_120.gif] and [Graphics:Images/NumericalDiffFormulaeMod_gr_121.gif].Since this requires typing of four derivatives to be solved, we will automate this process too, by using a table to construct the "variables."

[Graphics:Images/NumericalDiffFormulaeMod_gr_122.gif] [Graphics:Images/NumericalDiffFormulaeMod_gr_123.gif] [Graphics:Images/NumericalDiffFormulaeMod_gr_124.gif]

Amazingly, the algebra involved in solving the four equations will result in the cancellation of [Graphics:Images/NumericalDiffFormulaeMod_gr_125.gif]in the odd order derivatives and the term[Graphics:Images/NumericalDiffFormulaeMod_gr_126.gif] will cancel in the even order derivatives.This can be accomplished using Mathematica's Solve procedure.

[Graphics:Images/NumericalDiffFormulaeMod_gr_127.gif] [Graphics:Images/NumericalDiffFormulaeMod_gr_128.gif]

The output is not too clear to read, so we shall use the formula manipulation commands [Graphics:Images/NumericalDiffFormulaeMod_gr_129.gif] and [Graphics:Images/NumericalDiffFormulaeMod_gr_130.gif] to group the numerical differentiation portion, and then use the ReplaceAll command to change [Graphics:Images/NumericalDiffFormulaeMod_gr_131.gif] and[Graphics:Images/NumericalDiffFormulaeMod_gr_132.gif] to [Graphics:Images/NumericalDiffFormulaeMod_gr_133.gif] and[Graphics:Images/NumericalDiffFormulaeMod_gr_134.gif], then a final use of Together will clean up the numerical differentiation formula part.All this will be accomplished in the following three Mathematica commands.If the reader is curious about exactly what is happening in each step, then the semi-colons can be deleted and the results of each operation will be shown.

[Graphics:Images/NumericalDiffFormulaeMod_gr_135.gif] [Graphics:Images/NumericalDiffFormulaeMod_gr_136.gif] [Graphics:Images/NumericalDiffFormulaeMod_gr_137.gif] [Graphics:Images/NumericalDiffFormulaeMod_gr_138.gif] [Graphics:Images/NumericalDiffFormulaeMod_gr_139.gif]

Notice that the formula for approximating [Graphics:Images/NumericalDiffFormulaeMod_gr_140.gif] and [Graphics:Images/NumericalDiffFormulaeMod_gr_141.gif] have truncation error terms involving[Graphics:Images/NumericalDiffFormulaeMod_gr_142.gif] so they are numerical differentiation formulas of order [Graphics:Images/NumericalDiffFormulaeMod_gr_143.gif].But the formula for approximating [Graphics:Images/NumericalDiffFormulaeMod_gr_144.gif] and [Graphics:Images/NumericalDiffFormulaeMod_gr_145.gif] have truncation error terms involving[Graphics:Images/NumericalDiffFormulaeMod_gr_146.gif] so they are numerical differentiation formulas of order [Graphics:Images/NumericalDiffFormulaeMod_gr_147.gif].This is one of the many surprises in the theory of numerical analysis.

Again, we can uses Mathematica's 4.1 ability to symbolic recognize the order of approximation for divided difference formulas.If we add the term[Graphics:Images/NumericalDiffFormulaeMod_gr_148.gif] or [Graphics:Images/NumericalDiffFormulaeMod_gr_149.gif] to the numerical differentiation formula then we will be surprised to learn that Mathematica will tell us that it is the derivative plus[Graphics:Images/NumericalDiffFormulaeMod_gr_150.gif] or [Graphics:Images/NumericalDiffFormulaeMod_gr_151.gif] .The following commands illustrate this point.

[Graphics:Images/NumericalDiffFormulaeMod_gr_152.gif] [Graphics:Images/NumericalDiffFormulaeMod_gr_153.gif]

[Graphics:Images/NumericalDiffFormulaeMod_gr_154.gif] [Graphics:Images/NumericalDiffFormulaeMod_gr_155.gif]

[Graphics:Images/NumericalDiffFormulaeMod_gr_156.gif] [Graphics:Images/NumericalDiffFormulaeMod_gr_157.gif]

[Graphics:Images/NumericalDiffFormulaeMod_gr_158.gif] [Graphics:Images/NumericalDiffFormulaeMod_gr_159.gif]

Therefore, we have established the numerical differentiation formulas

[Graphics:Images/NumericalDiffFormulaeMod_gr_160.gif][Graphics:Images/NumericalDiffFormulaeMod_gr_161.gif][Graphics:Images/NumericalDiffFormulaeMod_gr_162.gif]


[Graphics:Images/NumericalDiffFormulaeMod_gr_163.gif][Graphics:Images/NumericalDiffFormulaeMod_gr_164.gif][Graphics:Images/NumericalDiffFormulaeMod_gr_165.gif]


[Graphics:Images/NumericalDiffFormulaeMod_gr_166.gif][Graphics:Images/NumericalDiffFormulaeMod_gr_167.gif][Graphics:Images/NumericalDiffFormulaeMod_gr_168.gif]


[Graphics:Images/NumericalDiffFormulaeMod_gr_169.gif][Graphics:Images/NumericalDiffFormulaeMod_gr_170.gif][Graphics:Images/NumericalDiffFormulaeMod_gr_171.gif]

These formulas can be written with the big "O" notation [Graphics:Images/NumericalDiffFormulaeMod_gr_172.gif] and [Graphics:Images/NumericalDiffFormulaeMod_gr_173.gif] if desired.

[Graphics:Images/NumericalDiffFormulaeMod_gr_174.gif][Graphics:Images/NumericalDiffFormulaeMod_gr_175.gif][Graphics:Images/NumericalDiffFormulaeMod_gr_176.gif]


[Graphics:Images/NumericalDiffFormulaeMod_gr_177.gif][Graphics:Images/NumericalDiffFormulaeMod_gr_178.gif][Graphics:Images/NumericalDiffFormulaeMod_gr_179.gif]


[Graphics:Images/NumericalDiffFormulaeMod_gr_180.gif][Graphics:Images/NumericalDiffFormulaeMod_gr_181.gif][Graphics:Images/NumericalDiffFormulaeMod_gr_182.gif]


[Graphics:Images/NumericalDiffFormulaeMod_gr_183.gif][Graphics:Images/NumericalDiffFormulaeMod_gr_184.gif][Graphics:Images/NumericalDiffFormulaeMod_gr_185.gif]

Appendix. Subroutines for Generating Numerical Differentiation Formulae

The central difference formulae use an odd number of points[Graphics:Images/NumericalDiffFormulaeMod_gr_186.gif],and an even number of[Graphics:Images/NumericalDiffFormulaeMod_gr_187.gif] equations.Since we want to include the remainder terms, we need to use series expansions of order[Graphics:Images/NumericalDiffFormulaeMod_gr_188.gif].The remainder term in these formulas all involve even powers ofhand even and odd derivatives depending on the situation.Also, the subroutine requires a replacement of the point where the remainder term is evaluated to be [Graphics:Images/NumericalDiffFormulaeMod_gr_189.gif] instead of[Graphics:Images/NumericalDiffFormulaeMod_gr_190.gif].

[Graphics:Images/NumericalDiffFormulaeMod_gr_191.gif]

The Five Point Central Difference Formulae

These are to difficult to do by hand, so we use the computer.

[Graphics:Images/NumericalDiffFormulaeMod_gr_192.gif]

[Graphics:Images/NumericalDiffFormulaeMod_gr_193.gif]

Higher order formulas are easy to obtain with Mathematica.

Subroutines for Generating the Forward and Backward Difference Formulae

Once we have the idea for the central difference formula, all we need to do is adjust the set of to be forward step sizes or backward step sizes and we can generate the forward and backward differentiation formulas.

[Graphics:Images/NumericalDiffFormulaeMod_gr_198.gif] [Graphics:Images/NumericalDiffFormulaeMod_gr_199.gif]

Explorations with the Higher Order Formulas

[Graphics:Images/NumericalDiffFormulaeMod_gr_200.gif]

[Graphics:Images/NumericalDiffFormulaeMod_gr_201.gif]

[Graphics:Images/NumericalDiffFormulaeMod_gr_202.gif]

[Graphics:Images/NumericalDiffFormulaeMod_gr_203.gif]

Higher order formulas are easy to obtain with Mathematica.



Discussion Center

Discuss/
Query

Papers/
Syllabus

Feedback/
Suggestion

Yahoo
Groups

Sirfdosti
Groups

Contact
Us

MEMBERS LOGIN
  
Email ID:
Password:

  Forgot Password?
 New User? Register!

INTERVIEW EBOOK
Get 9,000+ Interview Questions & Answers in an eBook. Interview Question & Answer Guide
  • 9,000+ Interview Questions
  • All Questions Answered
  • 5 FREE Bonuses
  • Free Upgrades
GATE RESOURCES
 
  • Gate Books
  • Training Institutes
  • Gate FAQs
  • GATE BOOKS
     
  • Mechanical Engineeering Books
  • Robotics Automations Engineering Books
  • Civil Engineering Books
  • Chemical Engineering Books
  • Environmental Engineering Books
  • Electrical Engineering Books
  • Electronics Engineering Books
  • Information Technology Books
  • Software Engineering Books
  • GATE Preparation Books
  • Exciting Offers



    GATE Exam, Gate 2009, Gate Papers, Gate Preparation & Related Pages


    GATE Overview | GATE Eligibility | Structure Of GATE | GATE Training Institutes | Colleges Providing M.Tech/M.E. | GATE Score | GATE Results | PG with Scholarships | Article On GATE | GATE Forum | GATE 2009 Exclusive | GATE 2009 Syllabus | GATE Organizing Institute | Important Dates for GATE Exam | How to Apply for GATE | Discipline / Branch Codes | GATE Syllabus for Aerospace Engineering | GATE Syllabus for Agricultural Engineering | GATE Syllabus for Architecture and Planning | GATE Syllabus for Chemical Engineering | GATE Syllabus for Chemistry | GATE Syllabus for Civil Engineering | GATE Syllabus for Computer Science / IT | GATE Syllabus for Electronics and Communication Engineering | GATE Syllabus for Engineering Sciences | GATE Syllabus for Geology and Geophysics | GATE Syllabus for Instrumentation Engineering | GATE Syllabus for Life Sciences | GATE Syllabus for Mathematics | GATE Syllabus for Mechanical Engineering | GATE Syllabus for Metallurgical Engineering | GATE Syllabus for Mining Engineering | GATE Syllabus for Physics | GATE Syllabus for Production and Industrial Engineering | GATE Syllabus for Pharmaceutical Sciences | GATE Syllabus for Textile Engineering and Fibre Science | GATE Preparation | GATE Pattern | GATE Tips & Tricks | GATE Compare Evaluation | GATE Sample Papers | GATE Downloads | Experts View on GATE | CEED 2009 | CEED 2009 Exam | Eligibility for CEED Exam | Application forms of CEED Exam | Important Dates of CEED Exam | Contact Address for CEED Exam | CEED Examination Centres | CEED Sample Papers | Discuss GATE | GATE Forum of OneStopGATE.com | GATE Exam Cities | Contact Details for GATE | Bank Details for GATE | GATE Miscellaneous Info | GATE FAQs | Advertisement on GATE | Contact Us on OneStopGATE |
    Copyright © 2024. One Stop Gate.com. All rights reserved Testimonials |Link To Us |Sitemap |Privacy Policy | Terms and Conditions|About Us
    Our Portals : Academic Tutorials | Best eBooksworld | Beyond Stats | City Details | Interview Questions | India Job Forum | Excellent Mobiles | Free Bangalore | Give Me The Code | Gog Logo | Free Classifieds | Jobs Assist | Interview Questions | One Stop FAQs | One Stop GATE | One Stop GRE | One Stop IAS | One Stop MBA | One Stop SAP | One Stop Testing | Web Hosting | Quick Site Kit | Sirf Dosti | Source Codes World | Tasty Food | Tech Archive | Software Testing Interview Questions | Free Online Exams | The Galz | Top Masala | Vyom | Vyom eBooks | Vyom International | Vyom Links | Vyoms | Vyom World
    C Interview Questions | C++ Interview Questions | Send Free SMS | Placement Papers | SMS Jokes | Cool Forwards | Romantic Shayari