OneStopGate.Com
OnestopGate   OnestopGate
   Sunday, November 17, 2024 Login  
OnestopGate
Home | Overview | Syllabus | Tutorials | FAQs | Downloads | Recommended Websites | Advertise | Payments | Contact Us | Forum
OneStopGate

GATE Resources
Gate Articles
Gate Books
Gate Colleges 
Gate Downloads 
Gate Faqs
Gate Jobs
Gate News 
Gate Sample Papers
Training Institutes

GATE Overview
Overview
GATE Eligibility
Structure Of GATE
GATE Coaching Centers
Colleges Providing M.Tech/M.E.
GATE Score
GATE Results
PG with Scholarships
Article On GATE
Admission Process For M.Tech/ MCP-PhD
GATE Topper 2012-13
GATE Forum




GATE 2025 Exclusive
Organizing Institute
Important Dates
How to Apply
Discipline Codes
GATE 2025 Exam Structure

GATE 2025 Syllabus
Aerospace Engg..
Agricultural Engg..
Architecture and Planning
Chemical Engg..
Chemistry
Civil Engg..
Computer Science / IT
Electronics & Communication Engg..
Electrical Engg..
Engineering Sciences
Geology and Geophysics
Instrumentation Engineering
Life Sciences
Mathematics
Mechanical Engg..
Metallurgical Engg..
Mining Engg..
Physics
Production & Industrial Engg..
Pharmaceutical Sciences
Textile Engineering and Fibre Science

GATE Study Material
Aerospace Engg..
Agricultural Engg..
Chemical Engg..
Chemistry
Civil Engg..
Computer Science / IT
Electronics & Communication Engg..
Electrical Engg..
Engineering Sciences
Instrumentation Engg..
Life Sciences
Mathematics
Mechanical Engg..
Physics
Pharmaceutical Sciences
Textile Engineering  and Fibre Science

GATE Preparation
GATE Pattern
GATE Tips N Tricks
Compare Evaluation
Sample Papers 
Gate Downloads 
Experts View

CEED 2013
CEED Exams
Eligibility
Application Forms
Important Dates
Contact Address
Examination Centres
CEED Sample Papers

Discuss GATE
GATE Forum
Exam Cities
Contact Details
Bank Details

Miscellaneous
Advertisment
Contact Us


Home » GATE Study Material » Mathematics » Numerical Analysis » Numerical Integration » Monte Carlo Integration

Monte Carlo Integration

Looking for GATE Preparation Material? Join & Get here now!

** Gate 2013 Question Papers.. ** CEED 2013 Results.. ** Gate 2013 Question Papers With Solutions.. ** GATE 2013 CUT-OFFs.. ** GATE 2013 Results.. **

Monte Carlo Integration

Background

    We will be discussing how to approximate the value of an integral based on the average of function values.  The following concept is useful.

Theorem  (Mean Value Theorem for Integrals).  If  [Graphics:Images/MonteCarloMod_gr_1.gif]  is continuous over  [Graphics:Images/MonteCarloMod_gr_2.gif],  then there exists a number  [Graphics:Images/MonteCarloMod_gr_3.gif],  with  [Graphics:Images/MonteCarloMod_gr_4.gif],  such that  

        [Graphics:Images/MonteCarloMod_gr_5.gif].

This can be written in the equivalent form:

        [Graphics:Images/MonteCarloMod_gr_6.gif].  

Remark.  This computation shows that the area under the curve is the base width  [Graphics:Images/MonteCarloMod_gr_7.gif]  times the "average height"  [Graphics:Images/MonteCarloMod_gr_8.gif].

Composite Midpoint Rule

    An intuitive method of finding the area under a curve  [Graphics:Images/MonteCarloMod_gr_17.gif]  is to approximate that area with a series of rectangles that lie above the intervals  [Graphics:Images/MonteCarloMod_gr_18.gif].  

Theorem (Composite Midpoint Rule).  Consider  [Graphics:Images/MonteCarloMod_gr_19.gif]  over [Graphics:Images/MonteCarloMod_gr_20.gif].  Let the interval  [Graphics:Images/MonteCarloMod_gr_21.gif] be subdivided into  [Graphics:Images/MonteCarloMod_gr_22.gif]  subintervals  [Graphics:Images/MonteCarloMod_gr_23.gif]  of equal width  [Graphics:Images/MonteCarloMod_gr_24.gif].  Form the equally spaced nodes  [Graphics:Images/MonteCarloMod_gr_25.gif]  for  [Graphics:Images/MonteCarloMod_gr_26.gif].  The composite midpoint rule for  n  subintervals is  

        
[Graphics:Images/MonteCarloMod_gr_27.gif].  

This can be written in the equivalent form  

        
[Graphics:Images/MonteCarloMod_gr_28.gif],     where     [Graphics:Images/MonteCarloMod_gr_29.gif].   

Corollary (Remainder term for the Midpoint Rule)  The composite midpoint rule  [Graphics:Images/MonteCarloMod_gr_30.gif]  is an numerical approximation to the integral, and  

        
[Graphics:Images/MonteCarloMod_gr_31.gif].   

Furthermore, if [Graphics:Images/MonteCarloMod_gr_32.gif],  then there exists a value  [Graphics:Images/MonteCarloMod_gr_33.gif]  with  [Graphics:Images/MonteCarloMod_gr_34.gif]  so that the error term  [Graphics:Images/MonteCarloMod_gr_35.gif]  has the form  

        [Graphics:Images/MonteCarloMod_gr_36.gif].  

This is expressed using the "big [Graphics:Images/MonteCarloMod_gr_37.gif]" notation  [Graphics:Images/MonteCarloMod_gr_38.gif].  

Algorithm Composite Midpoint Rule.  To approximate the integral  

        [Graphics:Images/MonteCarloMod_gr_39.gif],  

by sampling  [Graphics:Images/MonteCarloMod_gr_40.gif]  at the  [Graphics:Images/MonteCarloMod_gr_41.gif]  equally spaced points  [Graphics:Images/MonteCarloMod_gr_42.gif]  for  [Graphics:Images/MonteCarloMod_gr_43.gif],  where  [Graphics:Images/MonteCarloMod_gr_44.gif].  

Mathematica Subroutine (Midpoint Rule).

[Graphics:Images/MonteCarloMod_gr_45.gif]

Monte Carlo Method

    Monte Carlo methods can be thought of as statistical simulation methods that utilize a sequences of random numbers to perform the simulation. The name "Monte Carlo'' was coined by Nicholas Constantine Metropolis (1915-1999) and inspired by Stanslaw Ulam (1909-1986), because of the similarity of statistical simulation to games of chance, and because Monte Carlo is a center for gambling and games of chance.  

 

Approximation for an Integral

    The Monte Carlo method can be used to numerically approximate the value of an integral.  For a function of one variable the steps are:  

(i)    Pick n randomly distributed points  [Graphics:Images/MonteCarloMod_gr_67.gif] in the interval  [Graphics:Images/MonteCarloMod_gr_68.gif].    

(ii)    Determine the average value of the function  

         [Graphics:Images/MonteCarloMod_gr_69.gif].  

(iii)    Compute the approximation to the integral  

        [Graphics:Images/MonteCarloMod_gr_70.gif].

(iv)    An estimate for the error is

        [Graphics:Images/MonteCarloMod_gr_71.gif],     where     [Graphics:Images/MonteCarloMod_gr_72.gif].  

    Every time a Monte Carlo simulation is made using the same sample size it will come up with a slightly different value.  Larger values of  [Graphics:Images/MonteCarloMod_gr_73.gif]  will produce more accurate approximations.  The values converge very slowly of the order  [Graphics:Images/MonteCarloMod_gr_74.gif].  This property is a consequence of the Central Limit Theorem.

Mathematica Subroutine (Monte Carlo for 1 Dimensional Integrals).

[Graphics:Images/MonteCarloMod_gr_75.gif]

The above subroutine is all we need to "do the math."  The following subroutine presents the results in a nice format.

[Graphics:Images/MonteCarloMod_gr_76.gif]

Iterated Integrals in Higher Dimensions

    Sometimes we are given integrals which cannot be done analytically, especially in higher dimensions where the standard  methods of discretization can become computationally expensive.  For example, the error in the composite midpoint rule (and the composite trapezoidal rule) of an d-dimensional integral has the order of convergence   [Graphics:Images/MonteCarloMod_gr_199.gif].  We can apply the inequality  

        [Graphics:Images/MonteCarloMod_gr_200.gif]  when  [Graphics:Images/MonteCarloMod_gr_201.gif]  

to see that  Monte-Carlo integration will usually converge faster for quintuple multiple integrals and higher, i.e. [Graphics:Images/MonteCarloMod_gr_202.gif], etc.  

 

Approximation for a Multiple Integral

    The Monte Carlo method can be used to numerically approximate the value of a multiple integrals.  For a function of d variables the steps are:  

(i)    Pick n randomly distributed points  [Graphics:Images/MonteCarloMod_gr_203.gif]  in the "volume"   [Graphics:Images/MonteCarloMod_gr_204.gif].    

(ii)    Determine the average value of the function  

         [Graphics:Images/MonteCarloMod_gr_205.gif].  

(iii)    Compute the approximation to the integral  

        [Graphics:Images/MonteCarloMod_gr_206.gif].

(iv)    An estimate for the error is

        [Graphics:Images/MonteCarloMod_gr_207.gif],     where     [Graphics:Images/MonteCarloMod_gr_208.gif].  

 

Mathematica Subroutine (Monte Carlo for 3 Dimensional Integrals).

[Graphics:Images/MonteCarloMod_gr_209.gif]



Discussion Center

Discuss/
Query

Papers/
Syllabus

Feedback/
Suggestion

Yahoo
Groups

Sirfdosti
Groups

Contact
Us

MEMBERS LOGIN
  
Email ID:
Password:

  Forgot Password?
 New User? Register!

INTERVIEW EBOOK
Get 9,000+ Interview Questions & Answers in an eBook. Interview Question & Answer Guide
  • 9,000+ Interview Questions
  • All Questions Answered
  • 5 FREE Bonuses
  • Free Upgrades
GATE RESOURCES
 
  • Gate Books
  • Training Institutes
  • Gate FAQs
  • GATE BOOKS
     
  • Mechanical Engineeering Books
  • Robotics Automations Engineering Books
  • Civil Engineering Books
  • Chemical Engineering Books
  • Environmental Engineering Books
  • Electrical Engineering Books
  • Electronics Engineering Books
  • Information Technology Books
  • Software Engineering Books
  • GATE Preparation Books
  • Exciting Offers



    GATE Exam, Gate 2009, Gate Papers, Gate Preparation & Related Pages


    GATE Overview | GATE Eligibility | Structure Of GATE | GATE Training Institutes | Colleges Providing M.Tech/M.E. | GATE Score | GATE Results | PG with Scholarships | Article On GATE | GATE Forum | GATE 2009 Exclusive | GATE 2009 Syllabus | GATE Organizing Institute | Important Dates for GATE Exam | How to Apply for GATE | Discipline / Branch Codes | GATE Syllabus for Aerospace Engineering | GATE Syllabus for Agricultural Engineering | GATE Syllabus for Architecture and Planning | GATE Syllabus for Chemical Engineering | GATE Syllabus for Chemistry | GATE Syllabus for Civil Engineering | GATE Syllabus for Computer Science / IT | GATE Syllabus for Electronics and Communication Engineering | GATE Syllabus for Engineering Sciences | GATE Syllabus for Geology and Geophysics | GATE Syllabus for Instrumentation Engineering | GATE Syllabus for Life Sciences | GATE Syllabus for Mathematics | GATE Syllabus for Mechanical Engineering | GATE Syllabus for Metallurgical Engineering | GATE Syllabus for Mining Engineering | GATE Syllabus for Physics | GATE Syllabus for Production and Industrial Engineering | GATE Syllabus for Pharmaceutical Sciences | GATE Syllabus for Textile Engineering and Fibre Science | GATE Preparation | GATE Pattern | GATE Tips & Tricks | GATE Compare Evaluation | GATE Sample Papers | GATE Downloads | Experts View on GATE | CEED 2009 | CEED 2009 Exam | Eligibility for CEED Exam | Application forms of CEED Exam | Important Dates of CEED Exam | Contact Address for CEED Exam | CEED Examination Centres | CEED Sample Papers | Discuss GATE | GATE Forum of OneStopGATE.com | GATE Exam Cities | Contact Details for GATE | Bank Details for GATE | GATE Miscellaneous Info | GATE FAQs | Advertisement on GATE | Contact Us on OneStopGATE |
    Copyright © 2024. One Stop Gate.com. All rights reserved Testimonials |Link To Us |Sitemap |Privacy Policy | Terms and Conditions|About Us
    Our Portals : Academic Tutorials | Best eBooksworld | Beyond Stats | City Details | Interview Questions | India Job Forum | Excellent Mobiles | Free Bangalore | Give Me The Code | Gog Logo | Free Classifieds | Jobs Assist | Interview Questions | One Stop FAQs | One Stop GATE | One Stop GRE | One Stop IAS | One Stop MBA | One Stop SAP | One Stop Testing | Web Hosting | Quick Site Kit | Sirf Dosti | Source Codes World | Tasty Food | Tech Archive | Software Testing Interview Questions | Free Online Exams | The Galz | Top Masala | Vyom | Vyom eBooks | Vyom International | Vyom Links | Vyoms | Vyom World
    C Interview Questions | C++ Interview Questions | Send Free SMS | Placement Papers | SMS Jokes | Cool Forwards | Romantic Shayari