OneStopGate.Com
OnestopGate   OnestopGate
   Sunday, November 17, 2024 Login  
OnestopGate
Home | Overview | Syllabus | Tutorials | FAQs | Downloads | Recommended Websites | Advertise | Payments | Contact Us | Forum
OneStopGate

GATE Resources
Gate Articles
Gate Books
Gate Colleges 
Gate Downloads 
Gate Faqs
Gate Jobs
Gate News 
Gate Sample Papers
Training Institutes

GATE Overview
Overview
GATE Eligibility
Structure Of GATE
GATE Coaching Centers
Colleges Providing M.Tech/M.E.
GATE Score
GATE Results
PG with Scholarships
Article On GATE
Admission Process For M.Tech/ MCP-PhD
GATE Topper 2012-13
GATE Forum




GATE 2025 Exclusive
Organizing Institute
Important Dates
How to Apply
Discipline Codes
GATE 2025 Exam Structure

GATE 2025 Syllabus
Aerospace Engg..
Agricultural Engg..
Architecture and Planning
Chemical Engg..
Chemistry
Civil Engg..
Computer Science / IT
Electronics & Communication Engg..
Electrical Engg..
Engineering Sciences
Geology and Geophysics
Instrumentation Engineering
Life Sciences
Mathematics
Mechanical Engg..
Metallurgical Engg..
Mining Engg..
Physics
Production & Industrial Engg..
Pharmaceutical Sciences
Textile Engineering and Fibre Science

GATE Study Material
Aerospace Engg..
Agricultural Engg..
Chemical Engg..
Chemistry
Civil Engg..
Computer Science / IT
Electronics & Communication Engg..
Electrical Engg..
Engineering Sciences
Instrumentation Engg..
Life Sciences
Mathematics
Mechanical Engg..
Physics
Pharmaceutical Sciences
Textile Engineering  and Fibre Science

GATE Preparation
GATE Pattern
GATE Tips N Tricks
Compare Evaluation
Sample Papers 
Gate Downloads 
Experts View

CEED 2013
CEED Exams
Eligibility
Application Forms
Important Dates
Contact Address
Examination Centres
CEED Sample Papers

Discuss GATE
GATE Forum
Exam Cities
Contact Details
Bank Details

Miscellaneous
Advertisment
Contact Us


Home » GATE Study Material » Mathematics » Numerical Analysis » Numerical Optimization » Fibonacci Search

Fibonacci Search

Looking for GATE Preparation Material? Join & Get here now!

** Gate 2013 Question Papers.. ** CEED 2013 Results.. ** Gate 2013 Question Papers With Solutions.. ** GATE 2013 CUT-OFFs.. ** GATE 2013 Results.. **

Fibonacci Search

Bracketing Search Methods

    
An approach for finding the minimum of  [Graphics:Images/FibonacciSearchMod_gr_1.gif]  in a given interval is to evaluate the function many times and search for a local minimum.  To reduce the number of function evaluations it is important to have a good strategy for determining where  [Graphics:Images/FibonacciSearchMod_gr_2.gif]  is to be evaluated.  Two efficient bracketing methods are the golden ratio and Fibonacci searches.  To use either bracketing method for finding the minimum of  [Graphics:Images/FibonacciSearchMod_gr_3.gif],  a special condition must be met to ensure that there is a proper minimum in the given interval.

Definition (Unimodal Function)  The function  [Graphics:Images/FibonacciSearchMod_gr_4.gif]  is unimodal on  [Graphics:Images/FibonacciSearchMod_gr_5.gif],  if there exists a unique number [Graphics:Images/FibonacciSearchMod_gr_6.gif]  such that  
    
        
[Graphics:Images/FibonacciSearchMod_gr_7.gif]  is decreasing on  [Graphics:Images/FibonacciSearchMod_gr_8.gif],  
    and
        
[Graphics:Images/FibonacciSearchMod_gr_9.gif]  is increasing on  [Graphics:Images/FibonacciSearchMod_gr_10.gif].  

Fibonacci Search

    In the golden ratio search two function evaluations are made at the first iteration and then only one function evaluation is made for each subsequent iteration.  The value of
  [Graphics:Images/FibonacciSearchMod_gr_11.gif]  remains constant on each subinterval and the search is terminated at the [Graphics:Images/FibonacciSearchMod_gr_12.gif] subinterval, provided that  [Graphics:Images/FibonacciSearchMod_gr_13.gif]  or[Graphics:Images/FibonacciSearchMod_gr_14.gif]  where [Graphics:Images/FibonacciSearchMod_gr_15.gif] are the predefined tolerances.  The  Fibonacci search method differs from the golden ratio method in that the value of  [Graphics:Images/FibonacciSearchMod_gr_16.gif]  is not constant on each subinterval.  Additionally, the number of subintervals (iterations) is predetermined and based on the specified tolerances.  

    The Fibonacci search is based on the sequence of Fibonacci numbers which are defined by the equations

        
[Graphics:Images/FibonacciSearchMod_gr_17.gif]
        
[Graphics:Images/FibonacciSearchMod_gr_18.gif]   for   [Graphics:Images/FibonacciSearchMod_gr_19.gif]  

Thus the Fibonacci numbers are  [Graphics:Images/FibonacciSearchMod_gr_20.gif]  

    Assume we are given a function  [Graphics:Images/FibonacciSearchMod_gr_86.gif]  that is unimodal on the interval  [Graphics:Images/FibonacciSearchMod_gr_87.gif].  As in the golden ratio search a value [Graphics:Images/FibonacciSearchMod_gr_88.gif] [Graphics:Images/FibonacciSearchMod_gr_89.gif] is selected so that both of the interior points  [Graphics:Images/FibonacciSearchMod_gr_90.gif] will be used in the next subinterval and there will be only one new function evaluation.  

    If  [Graphics:Images/FibonacciSearchMod_gr_91.gif],  then the minimum must occur in the subinterval [Graphics:Images/FibonacciSearchMod_gr_92.gif], and we replace  [Graphics:Images/FibonacciSearchMod_gr_93.gif] and [Graphics:Images/FibonacciSearchMod_gr_94.gif]  and continue the search in the new subinterval [Graphics:Images/FibonacciSearchMod_gr_95.gif].   If  [Graphics:Images/FibonacciSearchMod_gr_96.gif], then the minimum must occur in the subinterval [Graphics:Images/FibonacciSearchMod_gr_97.gif], and we replace  [Graphics:Images/FibonacciSearchMod_gr_98.gif]  and  [Graphics:Images/FibonacciSearchMod_gr_99.gif]  and continue the search in the new subinterval [Graphics:Images/FibonacciSearchMod_gr_100.gif].  These choices are shown in Figure 1 below.  

[Graphics:Images/FibonacciSearchMod_gr_101.gif]               [Graphics:Images/FibonacciSearchMod_gr_102.gif]


If
[Graphics:Images/FibonacciSearchMod_gr_103.gif], then squeeze from the right and               If [Graphics:Images/FibonacciSearchMod_gr_104.gif], then squeeze from the left and  
use the new interval  [Graphics:Images/FibonacciSearchMod_gr_105.gif].                           use the new interval  [Graphics:Images/FibonacciSearchMod_gr_106.gif].

                Figure 1.  The decision process for the Fibonacci ratio search.   

 

    If  [Graphics:Images/FibonacciSearchMod_gr_107.gif]  and only one new function evaluation is to be made in the interval [Graphics:Images/FibonacciSearchMod_gr_108.gif],  then we select  [Graphics:Images/FibonacciSearchMod_gr_109.gif]  [Graphics:Images/FibonacciSearchMod_gr_110.gif]  for the subinterval  [Graphics:Images/FibonacciSearchMod_gr_111.gif].   We already have relabeled  
    
        
[Graphics:Images/FibonacciSearchMod_gr_112.gif]

and since  
[Graphics:Images/FibonacciSearchMod_gr_113.gif] we will relabel it by  

        [Graphics:Images/FibonacciSearchMod_gr_114.gif]
        
then we will have

(1)        
[Graphics:Images/FibonacciSearchMod_gr_115.gif].   

The ratio [Graphics:Images/FibonacciSearchMod_gr_116.gif] is chosen so that  [Graphics:Images/FibonacciSearchMod_gr_117.gif]  and  [Graphics:Images/FibonacciSearchMod_gr_118.gif] and subtraction produces

             [Graphics:Images/FibonacciSearchMod_gr_119.gif]  
        
             [Graphics:Images/FibonacciSearchMod_gr_120.gif]  
        
(2)        [Graphics:Images/FibonacciSearchMod_gr_121.gif]  

And the ratio [Graphics:Images/FibonacciSearchMod_gr_122.gif] is chosen so that  

(3)        [Graphics:Images/FibonacciSearchMod_gr_123.gif].  

Now substitute (2) and (3) into (1) and get  

(4)        [Graphics:Images/FibonacciSearchMod_gr_124.gif].  

Also the length of the interval [Graphics:Images/FibonacciSearchMod_gr_125.gif] has been shrunk by the factor [Graphics:Images/FibonacciSearchMod_gr_126.gif].  Thus  [Graphics:Images/FibonacciSearchMod_gr_127.gif] and using this in (4) produces  

(5)        [Graphics:Images/FibonacciSearchMod_gr_128.gif].  

Cancel the common factor  [Graphics:Images/FibonacciSearchMod_gr_129.gif] in (5) and we now have  

(6)        [Graphics:Images/FibonacciSearchMod_gr_130.gif].  

Solving (6) for [Graphics:Images/FibonacciSearchMod_gr_131.gif] produces  

(7)        [Graphics:Images/FibonacciSearchMod_gr_132.gif].  

Now we introduce the Fibonacci numbers  [Graphics:Images/FibonacciSearchMod_gr_133.gif]  for the subscript  [Graphics:Images/FibonacciSearchMod_gr_134.gif].  In equation (7), substitute  [Graphics:Images/FibonacciSearchMod_gr_135.gif] and get the following  

        [Graphics:Images/FibonacciSearchMod_gr_136.gif]  

        [Graphics:Images/FibonacciSearchMod_gr_137.gif]  

        [Graphics:Images/FibonacciSearchMod_gr_138.gif]  

Reasoning inductively, it follows that the Fibonacci search can be begun with

        
[Graphics:Images/FibonacciSearchMod_gr_139.gif]

        
[Graphics:Images/FibonacciSearchMod_gr_140.gif]
and

        [Graphics:Images/FibonacciSearchMod_gr_141.gif]    for  [Graphics:Images/FibonacciSearchMod_gr_142.gif].  

Note that the last step will be      

        [Graphics:Images/FibonacciSearchMod_gr_143.gif],

thus no new points can be added at this stage (i.e. the algorithm terminates).  Therefore, the set of possible ratios is  

        [Graphics:Images/FibonacciSearchMod_gr_144.gif].     

There will be exactly  n-2  steps in a Fibonacci search!  

    The  [Graphics:Images/FibonacciSearchMod_gr_145.gif]  subinterval is obtained by reducing the length of the  [Graphics:Images/FibonacciSearchMod_gr_146.gif]  subinterval by a factor of  [Graphics:Images/FibonacciSearchMod_gr_147.gif].  After  [Graphics:Images/FibonacciSearchMod_gr_148.gif]  steps the length of the last subinterval will be  

        
[Graphics:Images/FibonacciSearchMod_gr_149.gif].

If the abscissa of the minimum is to be found with a tolerance of[Graphics:Images/FibonacciSearchMod_gr_150.gif],  then we want [Graphics:Images/FibonacciSearchMod_gr_151.gif].  It is necessary to use  n  iterations,  where  n  is the smallest integer such that  

(8)        [Graphics:Images/FibonacciSearchMod_gr_152.gif].  

Note.  Solving the above inequality requires either a trial and error look at the sequence of Fibonacci numbers, or the deeper fact that the Fibonacci numbers can be generated by the formula

        [Graphics:Images/FibonacciSearchMod_gr_153.gif].

Knowing this fact may be useful, but we still need to compute all the Fibonacci numbers  [Graphics:Images/FibonacciSearchMod_gr_154.gif]  in order to calculate the ratios  [Graphics:Images/FibonacciSearchMod_gr_155.gif].  

    The interior points  [Graphics:Images/FibonacciSearchMod_gr_156.gif]  and  [Graphics:Images/FibonacciSearchMod_gr_157.gif]  of the [Graphics:Images/FibonacciSearchMod_gr_158.gif] subinterval  [Graphics:Images/FibonacciSearchMod_gr_159.gif]  are found, as needed, using the formulas  

(9)
          [Graphics:Images/FibonacciSearchMod_gr_160.gif],  
        
(10)        
[Graphics:Images/FibonacciSearchMod_gr_161.gif].  

Note.  The value of  n  used in formulas (9) and (10) is found using inequality (8).

Algorithm (Fibonacci Search for a Minimum).  To numerically approximate the minimum of  [Graphics:Images/FibonacciSearchMod_gr_162.gif]  on the interval  [Graphics:Images/FibonacciSearchMod_gr_163.gif]  by using a Fibonacci search.  Proceed with the method only if  [Graphics:Images/FibonacciSearchMod_gr_164.gif]  is a unimodal function on the interval  [Graphics:Images/FibonacciSearchMod_gr_165.gif].  Terminate the process after  n iterations have been completed, where  [Graphics:Images/FibonacciSearchMod_gr_166.gif].

Mathematica Subroutine (Fibonacci Search for a Minimum).

[Graphics:Images/FibonacciSearchMod_gr_167.gif]

    Each iteration requires the determination of two new interior points, one from the previous iteration and the second from formula (9) or (10).   When  [Graphics:Images/FibonacciSearchMod_gr_168.gif],  the two interior points will be concurrent in the middle of the interval.  In following example, to distinguish the last two interior points a small distinguishability constant, [Graphics:Images/FibonacciSearchMod_gr_169.gif], is introduced. Thus when  [Graphics:Images/FibonacciSearchMod_gr_170.gif]  is used in formula (9) or (10), the coefficients of  [Graphics:Images/FibonacciSearchMod_gr_171.gif]  are  [Graphics:Images/FibonacciSearchMod_gr_172.gif]  or  [Graphics:Images/FibonacciSearchMod_gr_173.gif],  respectively.



Discussion Center

Discuss/
Query

Papers/
Syllabus

Feedback/
Suggestion

Yahoo
Groups

Sirfdosti
Groups

Contact
Us

MEMBERS LOGIN
  
Email ID:
Password:

  Forgot Password?
 New User? Register!

INTERVIEW EBOOK
Get 9,000+ Interview Questions & Answers in an eBook. Interview Question & Answer Guide
  • 9,000+ Interview Questions
  • All Questions Answered
  • 5 FREE Bonuses
  • Free Upgrades
GATE RESOURCES
 
  • Gate Books
  • Training Institutes
  • Gate FAQs
  • GATE BOOKS
     
  • Mechanical Engineeering Books
  • Robotics Automations Engineering Books
  • Civil Engineering Books
  • Chemical Engineering Books
  • Environmental Engineering Books
  • Electrical Engineering Books
  • Electronics Engineering Books
  • Information Technology Books
  • Software Engineering Books
  • GATE Preparation Books
  • Exciting Offers



    GATE Exam, Gate 2009, Gate Papers, Gate Preparation & Related Pages


    GATE Overview | GATE Eligibility | Structure Of GATE | GATE Training Institutes | Colleges Providing M.Tech/M.E. | GATE Score | GATE Results | PG with Scholarships | Article On GATE | GATE Forum | GATE 2009 Exclusive | GATE 2009 Syllabus | GATE Organizing Institute | Important Dates for GATE Exam | How to Apply for GATE | Discipline / Branch Codes | GATE Syllabus for Aerospace Engineering | GATE Syllabus for Agricultural Engineering | GATE Syllabus for Architecture and Planning | GATE Syllabus for Chemical Engineering | GATE Syllabus for Chemistry | GATE Syllabus for Civil Engineering | GATE Syllabus for Computer Science / IT | GATE Syllabus for Electronics and Communication Engineering | GATE Syllabus for Engineering Sciences | GATE Syllabus for Geology and Geophysics | GATE Syllabus for Instrumentation Engineering | GATE Syllabus for Life Sciences | GATE Syllabus for Mathematics | GATE Syllabus for Mechanical Engineering | GATE Syllabus for Metallurgical Engineering | GATE Syllabus for Mining Engineering | GATE Syllabus for Physics | GATE Syllabus for Production and Industrial Engineering | GATE Syllabus for Pharmaceutical Sciences | GATE Syllabus for Textile Engineering and Fibre Science | GATE Preparation | GATE Pattern | GATE Tips & Tricks | GATE Compare Evaluation | GATE Sample Papers | GATE Downloads | Experts View on GATE | CEED 2009 | CEED 2009 Exam | Eligibility for CEED Exam | Application forms of CEED Exam | Important Dates of CEED Exam | Contact Address for CEED Exam | CEED Examination Centres | CEED Sample Papers | Discuss GATE | GATE Forum of OneStopGATE.com | GATE Exam Cities | Contact Details for GATE | Bank Details for GATE | GATE Miscellaneous Info | GATE FAQs | Advertisement on GATE | Contact Us on OneStopGATE |
    Copyright © 2024. One Stop Gate.com. All rights reserved Testimonials |Link To Us |Sitemap |Privacy Policy | Terms and Conditions|About Us
    Our Portals : Academic Tutorials | Best eBooksworld | Beyond Stats | City Details | Interview Questions | India Job Forum | Excellent Mobiles | Free Bangalore | Give Me The Code | Gog Logo | Free Classifieds | Jobs Assist | Interview Questions | One Stop FAQs | One Stop GATE | One Stop GRE | One Stop IAS | One Stop MBA | One Stop SAP | One Stop Testing | Web Hosting | Quick Site Kit | Sirf Dosti | Source Codes World | Tasty Food | Tech Archive | Software Testing Interview Questions | Free Online Exams | The Galz | Top Masala | Vyom | Vyom eBooks | Vyom International | Vyom Links | Vyoms | Vyom World
    C Interview Questions | C++ Interview Questions | Send Free SMS | Placement Papers | SMS Jokes | Cool Forwards | Romantic Shayari