OneStopGate.Com
OnestopGate   OnestopGate
   Sunday, November 17, 2024 Login  
OnestopGate
Home | Overview | Syllabus | Tutorials | FAQs | Downloads | Recommended Websites | Advertise | Payments | Contact Us | Forum
OneStopGate

GATE Resources
Gate Articles
Gate Books
Gate Colleges 
Gate Downloads 
Gate Faqs
Gate Jobs
Gate News 
Gate Sample Papers
Training Institutes

GATE Overview
Overview
GATE Eligibility
Structure Of GATE
GATE Coaching Centers
Colleges Providing M.Tech/M.E.
GATE Score
GATE Results
PG with Scholarships
Article On GATE
Admission Process For M.Tech/ MCP-PhD
GATE Topper 2012-13
GATE Forum




GATE 2025 Exclusive
Organizing Institute
Important Dates
How to Apply
Discipline Codes
GATE 2025 Exam Structure

GATE 2025 Syllabus
Aerospace Engg..
Agricultural Engg..
Architecture and Planning
Chemical Engg..
Chemistry
Civil Engg..
Computer Science / IT
Electronics & Communication Engg..
Electrical Engg..
Engineering Sciences
Geology and Geophysics
Instrumentation Engineering
Life Sciences
Mathematics
Mechanical Engg..
Metallurgical Engg..
Mining Engg..
Physics
Production & Industrial Engg..
Pharmaceutical Sciences
Textile Engineering and Fibre Science

GATE Study Material
Aerospace Engg..
Agricultural Engg..
Chemical Engg..
Chemistry
Civil Engg..
Computer Science / IT
Electronics & Communication Engg..
Electrical Engg..
Engineering Sciences
Instrumentation Engg..
Life Sciences
Mathematics
Mechanical Engg..
Physics
Pharmaceutical Sciences
Textile Engineering  and Fibre Science

GATE Preparation
GATE Pattern
GATE Tips N Tricks
Compare Evaluation
Sample Papers 
Gate Downloads 
Experts View

CEED 2013
CEED Exams
Eligibility
Application Forms
Important Dates
Contact Address
Examination Centres
CEED Sample Papers

Discuss GATE
GATE Forum
Exam Cities
Contact Details
Bank Details

Miscellaneous
Advertisment
Contact Us


Home » GATE Study Material » Mathematics » Numerical Analysis » Numerical Optimization » Newton's Search Method

Newton's Search Method

Looking for GATE Preparation Material? Join & Get here now!

** Gate 2013 Question Papers.. ** CEED 2013 Results.. ** Gate 2013 Question Papers With Solutions.. ** GATE 2013 CUT-OFFs.. ** GATE 2013 Results.. **

Newton's Search Method

Newton's Method

    The quadratic approximation method for finding a minimum of a function of one variable generated a sequence of second degree Lagrange polynomials, and used them to approximate where the minimum is located.  It was implicitly assumed that near the minimum, the shape of the quadratics approximated the shape of the objective function  [Graphics:Images/NewtonSearchMod_gr_1.gif].  The resulting sequence of minimums of the quadratics produced a sequence converging to the minimum of the objective function  [Graphics:Images/NewtonSearchMod_gr_2.gif].  Newton's search method extends this process to functions of  n  independent variables:  [Graphics:Images/NewtonSearchMod_gr_3.gif].  Starting at an initial point  [Graphics:Images/NewtonSearchMod_gr_4.gif],  a sequence of second-degree polynomials in  n  variables can be constructed recursively.  If the objective function is well-behaved and the initial point is near the actual minimum, then the sequence of minimums of the quadratics will converge to the minimum of the objective function.  The process will use both the first- and second-order partial derivatives of the objective function.  Recall that the gradient method used only the first partial derivatives.  It is to be expected that Newton's method will be more efficient than the gradient method.

 

Background

    Now we turn to the minimization of a function [Graphics:Images/NewtonSearchMod_gr_5.gif] of  n  variables, where  [Graphics:Images/NewtonSearchMod_gr_6.gif]  and the partial derivatives of [Graphics:Images/NewtonSearchMod_gr_7.gif] are accessible.  Although the Newton search method will turn out to have a familiar form.  For illustration purposes we emphasize the two dimensional case when [Graphics:Images/NewtonSearchMod_gr_8.gif].  The extension to n dimensions is discussed in the hyperlink.

 

Definition (Gradient).  Assume that  [Graphics:Images/NewtonSearchMod_gr_9.gif]  is a function of two variables,  [Graphics:Images/NewtonSearchMod_gr_10.gif],  and has partial derivatives  [Graphics:Images/NewtonSearchMod_gr_11.gif]  and  [Graphics:Images/NewtonSearchMod_gr_12.gif].  The gradient of  [Graphics:Images/NewtonSearchMod_gr_13.gif],  denoted by  [Graphics:Images/NewtonSearchMod_gr_14.gif],  is the vector function  

    [Graphics:Images/NewtonSearchMod_gr_15.gif].  

 

Definition (Jacobian Matrix).  Assume that [Graphics:Images/NewtonSearchMod_gr_16.gif] are functions of two variables,  [Graphics:Images/NewtonSearchMod_gr_17.gif], their Jacobian matrix  [Graphics:Images/NewtonSearchMod_gr_18.gif] is  

        [Graphics:Images/NewtonSearchMod_gr_19.gif].  

 

Definition (Hessian Matrix).  Assume that  [Graphics:Images/NewtonSearchMod_gr_20.gif]  is a function of two variables,  [Graphics:Images/NewtonSearchMod_gr_21.gif],  and has partial derivatives up to the order two.  The Hessian matrix   [Graphics:Images/NewtonSearchMod_gr_22.gif]  is defined as follows:

        [Graphics:Images/NewtonSearchMod_gr_23.gif].  

 

Lemma 1.  For  [Graphics:Images/NewtonSearchMod_gr_24.gif]  the Hessian matrix  [Graphics:Images/NewtonSearchMod_gr_25.gif]  is the Jacobian matrix for the two functions [Graphics:Images/NewtonSearchMod_gr_26.gif], i. e.

        [Graphics:Images/NewtonSearchMod_gr_27.gif].  

 

Lemma 2.  If the second order partial derivatives of  [Graphics:Images/NewtonSearchMod_gr_28.gif]  are continuous then the Hessian matrix  [Graphics:Images/NewtonSearchMod_gr_29.gif]  is symmetric.  

Taylor Polynomial for f(x,y)

Assume that  [Graphics:Images/NewtonSearchMod_gr_36.gif]  is a function of two variables,  [Graphics:Images/NewtonSearchMod_gr_37.gif],  and has partial derivatives up to the order two.  There are two ways to write the quadratic approximation to  f(x,y),  based on series and matrices, respectfully.  Assume that the point of expansion is  [Graphics:Images/NewtonSearchMod_gr_38.gif]  and use the notation  [Graphics:Images/NewtonSearchMod_gr_39.gif]  and [Graphics:Images/NewtonSearchMod_gr_40.gif],  then       

    [Graphics:Images/NewtonSearchMod_gr_41.gif].  

The Taylor polynomial using series notation is    

    [Graphics:Images/NewtonSearchMod_gr_42.gif]
    
The Taylor polynomial using vector and matrix notation is    

    [Graphics:Images/NewtonSearchMod_gr_43.gif]
    
The latter can be written in the form

    [Graphics:Images/NewtonSearchMod_gr_44.gif].  
    
Using vector notations  [Graphics:Images/NewtonSearchMod_gr_45.gif],  [Graphics:Images/NewtonSearchMod_gr_46.gif]  and [Graphics:Images/NewtonSearchMod_gr_47.gif]  it looks like

    [Graphics:Images/NewtonSearchMod_gr_48.gif].  

The above formula is also the expansion of   [Graphics:Images/NewtonSearchMod_gr_49.gif]  centered at the point  [Graphics:Images/NewtonSearchMod_gr_50.gif]  with  [Graphics:Images/NewtonSearchMod_gr_51.gif].  

Newton's Method for Finding a Minimum

    Now we turn to the minimization of a function [Graphics:Images/NewtonSearchMod_gr_63.gif] of  n  variables, where  [Graphics:Images/NewtonSearchMod_gr_64.gif]  and the partial derivatives of [Graphics:Images/NewtonSearchMod_gr_65.gif] are accessible.  Assume that the first and second partial derivatives of  [Graphics:Images/NewtonSearchMod_gr_66.gif]  exist and are continuous in a region containing the point  [Graphics:Images/NewtonSearchMod_gr_67.gif],  and that there is a minimum at the point  [Graphics:Images/NewtonSearchMod_gr_68.gif].  The quadratic polynomial approximation to  [Graphics:Images/NewtonSearchMod_gr_69.gif]  is  

        [Graphics:Images/NewtonSearchMod_gr_70.gif]

A minimum of  [Graphics:Images/NewtonSearchMod_gr_71.gif]  occurs where  [Graphics:Images/NewtonSearchMod_gr_72.gif].  

Using the notation  [Graphics:Images/NewtonSearchMod_gr_73.gif]  and  [Graphics:Images/NewtonSearchMod_gr_74.gif] and the symmetry of  [Graphics:Images/NewtonSearchMod_gr_75.gif],  we write  

        [Graphics:Images/NewtonSearchMod_gr_76.gif]

The gradient  [Graphics:Images/NewtonSearchMod_gr_77.gif]  is given by the calculation  

        [Graphics:Images/NewtonSearchMod_gr_78.gif]

Thus the expression for  [Graphics:Images/NewtonSearchMod_gr_79.gif]  can be written as

        [Graphics:Images/NewtonSearchMod_gr_80.gif].  

If  [Graphics:Images/NewtonSearchMod_gr_81.gif]  is close to the point  [Graphics:Images/NewtonSearchMod_gr_82.gif]  (where a minimum of  f  occurs),  then  [Graphics:Images/NewtonSearchMod_gr_83.gif]  is invertible the above equation can be solved for  [Graphics:Images/NewtonSearchMod_gr_84.gif], and we have  

        [Graphics:Images/NewtonSearchMod_gr_85.gif].  

This value of  [Graphics:Images/NewtonSearchMod_gr_86.gif] can be used as the next approximation to [Graphics:Images/NewtonSearchMod_gr_87.gif]  and is the first step in Newton's method for finding a minimum

        [Graphics:Images/NewtonSearchMod_gr_88.gif].  

 

Lemma  If column vectors are preferred over row vectors, then  [Graphics:Images/NewtonSearchMod_gr_89.gif]  is given by the computation

        [Graphics:Images/NewtonSearchMod_gr_90.gif].

Remark. This is equivalent to a Newton-Raphson root finding problem:  Given the vector function  [Graphics:Images/NewtonSearchMod_gr_91.gif]  find the root of the equation  [Graphics:Images/NewtonSearchMod_gr_92.gif].  For this problem the Newton-Raphson formula is known to be  

        [Graphics:Images/NewtonSearchMod_gr_93.gif],

where our previous work with Newton-Raphson method used column vectors  [Graphics:Images/NewtonSearchMod_gr_94.gif]  and  [Graphics:Images/NewtonSearchMod_gr_95.gif].  Here we use  [Graphics:Images/NewtonSearchMod_gr_96.gif]  and Lemma 1 gives the relationship [Graphics:Images/NewtonSearchMod_gr_97.gif].

 

Outline of the Newton Method for Finding a Minimum

    Start with the approximation  [Graphics:Images/NewtonSearchMod_gr_98.gif]  to the minimum point  [Graphics:Images/NewtonSearchMod_gr_99.gif].   Set  [Graphics:Images/NewtonSearchMod_gr_100.gif].  
    
(i)    Evaluate the gradient vector  [Graphics:Images/NewtonSearchMod_gr_101.gif]  and Hessian matrix   [Graphics:Images/NewtonSearchMod_gr_102.gif]  

(ii)    Compute the next point  [Graphics:Images/NewtonSearchMod_gr_103.gif].

(iii)    Perform the termination test for minimization.  Set  [Graphics:Images/NewtonSearchMod_gr_104.gif].  

    Repeat the process.

    In equation
(ii) the inverse of the Hessian matrix is used to solve for  [Graphics:Images/NewtonSearchMod_gr_105.gif].  It would be better to solve the system of linear equations represented by equation (ii) with a linear system solver rather than a matrix inversion.  The reader should realize that the inverse is primarily a theoretical tool and the computation and use of inverses is inherently inefficient.

 

Algorithm (Newton's Method for Finding a Minimum).  To numerically approximate a local minimum of  [Graphics:Images/NewtonSearchMod_gr_106.gif],  where  f  is a continuous function of  n  real variables and  [Graphics:Images/NewtonSearchMod_gr_107.gif]  by starting with one point  [Graphics:Images/NewtonSearchMod_gr_108.gif]  and using the Newton method search for a minimum.

Program (Newton's Method for Finding a Minimum).  To numerically approximate a local minimum of  [Graphics:Images/NewtonSearchMod_gr_109.gif],  where  f  is a continuous function of  n  real variables and  [Graphics:Images/NewtonSearchMod_gr_110.gif]  by starting with one point  [Graphics:Images/NewtonSearchMod_gr_111.gif]  and using the Newton method search for a minimum.  For illustration purposes we propose the following subroutine for  [Graphics:Images/NewtonSearchMod_gr_112.gif]  variables.  

[Graphics:Images/NewtonSearchMod_gr_113.gif]



Discussion Center

Discuss/
Query

Papers/
Syllabus

Feedback/
Suggestion

Yahoo
Groups

Sirfdosti
Groups

Contact
Us

MEMBERS LOGIN
  
Email ID:
Password:

  Forgot Password?
 New User? Register!

INTERVIEW EBOOK
Get 9,000+ Interview Questions & Answers in an eBook. Interview Question & Answer Guide
  • 9,000+ Interview Questions
  • All Questions Answered
  • 5 FREE Bonuses
  • Free Upgrades
GATE RESOURCES
 
  • Gate Books
  • Training Institutes
  • Gate FAQs
  • GATE BOOKS
     
  • Mechanical Engineeering Books
  • Robotics Automations Engineering Books
  • Civil Engineering Books
  • Chemical Engineering Books
  • Environmental Engineering Books
  • Electrical Engineering Books
  • Electronics Engineering Books
  • Information Technology Books
  • Software Engineering Books
  • GATE Preparation Books
  • Exciting Offers



    GATE Exam, Gate 2009, Gate Papers, Gate Preparation & Related Pages


    GATE Overview | GATE Eligibility | Structure Of GATE | GATE Training Institutes | Colleges Providing M.Tech/M.E. | GATE Score | GATE Results | PG with Scholarships | Article On GATE | GATE Forum | GATE 2009 Exclusive | GATE 2009 Syllabus | GATE Organizing Institute | Important Dates for GATE Exam | How to Apply for GATE | Discipline / Branch Codes | GATE Syllabus for Aerospace Engineering | GATE Syllabus for Agricultural Engineering | GATE Syllabus for Architecture and Planning | GATE Syllabus for Chemical Engineering | GATE Syllabus for Chemistry | GATE Syllabus for Civil Engineering | GATE Syllabus for Computer Science / IT | GATE Syllabus for Electronics and Communication Engineering | GATE Syllabus for Engineering Sciences | GATE Syllabus for Geology and Geophysics | GATE Syllabus for Instrumentation Engineering | GATE Syllabus for Life Sciences | GATE Syllabus for Mathematics | GATE Syllabus for Mechanical Engineering | GATE Syllabus for Metallurgical Engineering | GATE Syllabus for Mining Engineering | GATE Syllabus for Physics | GATE Syllabus for Production and Industrial Engineering | GATE Syllabus for Pharmaceutical Sciences | GATE Syllabus for Textile Engineering and Fibre Science | GATE Preparation | GATE Pattern | GATE Tips & Tricks | GATE Compare Evaluation | GATE Sample Papers | GATE Downloads | Experts View on GATE | CEED 2009 | CEED 2009 Exam | Eligibility for CEED Exam | Application forms of CEED Exam | Important Dates of CEED Exam | Contact Address for CEED Exam | CEED Examination Centres | CEED Sample Papers | Discuss GATE | GATE Forum of OneStopGATE.com | GATE Exam Cities | Contact Details for GATE | Bank Details for GATE | GATE Miscellaneous Info | GATE FAQs | Advertisement on GATE | Contact Us on OneStopGATE |
    Copyright © 2024. One Stop Gate.com. All rights reserved Testimonials |Link To Us |Sitemap |Privacy Policy | Terms and Conditions|About Us
    Our Portals : Academic Tutorials | Best eBooksworld | Beyond Stats | City Details | Interview Questions | India Job Forum | Excellent Mobiles | Free Bangalore | Give Me The Code | Gog Logo | Free Classifieds | Jobs Assist | Interview Questions | One Stop FAQs | One Stop GATE | One Stop GRE | One Stop IAS | One Stop MBA | One Stop SAP | One Stop Testing | Web Hosting | Quick Site Kit | Sirf Dosti | Source Codes World | Tasty Food | Tech Archive | Software Testing Interview Questions | Free Online Exams | The Galz | Top Masala | Vyom | Vyom eBooks | Vyom International | Vyom Links | Vyoms | Vyom World
    C Interview Questions | C++ Interview Questions | Send Free SMS | Placement Papers | SMS Jokes | Cool Forwards | Romantic Shayari