OneStopGate.Com
OnestopGate   OnestopGate
   Sunday, November 17, 2024 Login  
OnestopGate
Home | Overview | Syllabus | Tutorials | FAQs | Downloads | Recommended Websites | Advertise | Payments | Contact Us | Forum
OneStopGate

GATE Resources
Gate Articles
Gate Books
Gate Colleges 
Gate Downloads 
Gate Faqs
Gate Jobs
Gate News 
Gate Sample Papers
Training Institutes

GATE Overview
Overview
GATE Eligibility
Structure Of GATE
GATE Coaching Centers
Colleges Providing M.Tech/M.E.
GATE Score
GATE Results
PG with Scholarships
Article On GATE
Admission Process For M.Tech/ MCP-PhD
GATE Topper 2012-13
GATE Forum




GATE 2025 Exclusive
Organizing Institute
Important Dates
How to Apply
Discipline Codes
GATE 2025 Exam Structure

GATE 2025 Syllabus
Aerospace Engg..
Agricultural Engg..
Architecture and Planning
Chemical Engg..
Chemistry
Civil Engg..
Computer Science / IT
Electronics & Communication Engg..
Electrical Engg..
Engineering Sciences
Geology and Geophysics
Instrumentation Engineering
Life Sciences
Mathematics
Mechanical Engg..
Metallurgical Engg..
Mining Engg..
Physics
Production & Industrial Engg..
Pharmaceutical Sciences
Textile Engineering and Fibre Science

GATE Study Material
Aerospace Engg..
Agricultural Engg..
Chemical Engg..
Chemistry
Civil Engg..
Computer Science / IT
Electronics & Communication Engg..
Electrical Engg..
Engineering Sciences
Instrumentation Engg..
Life Sciences
Mathematics
Mechanical Engg..
Physics
Pharmaceutical Sciences
Textile Engineering  and Fibre Science

GATE Preparation
GATE Pattern
GATE Tips N Tricks
Compare Evaluation
Sample Papers 
Gate Downloads 
Experts View

CEED 2013
CEED Exams
Eligibility
Application Forms
Important Dates
Contact Address
Examination Centres
CEED Sample Papers

Discuss GATE
GATE Forum
Exam Cities
Contact Details
Bank Details

Miscellaneous
Advertisment
Contact Us


Home » GATE Study Material » Mathematics » Numerical Analysis » Numerical Optimization » Quadratic Interpolative Search

Quadratic Interpolative Search

Looking for GATE Preparation Material? Join & Get here now!

** Gate 2013 Question Papers.. ** CEED 2013 Results.. ** Gate 2013 Question Papers With Solutions.. ** GATE 2013 CUT-OFFs.. ** GATE 2013 Results.. **

Quadratic Interpolative Search

Background for Search Methods

    
An approach for finding the minimum of  [Graphics:Images/QuadraticSearchMod_gr_1.gif]  in a given interval is to evaluate the function many times and search for a local minimum.  To reduce the number of function evaluations it is important to have a good strategy for determining where  [Graphics:Images/QuadraticSearchMod_gr_2.gif]  is to be evaluated.  Two efficient bracketing methods are the golden ratio and Fibonacci searches.  To use either bracketing method for finding the minimum of  [Graphics:Images/QuadraticSearchMod_gr_3.gif],  a special condition must be met to ensure that there is a proper minimum in the given interval.

 

Definition (Unimodal Function)  The function  [Graphics:Images/QuadraticSearchMod_gr_4.gif]  is unimodal on  [Graphics:Images/QuadraticSearchMod_gr_5.gif],  if there exists a unique number [Graphics:Images/QuadraticSearchMod_gr_6.gif]  such that  
    
        
[Graphics:Images/QuadraticSearchMod_gr_7.gif]  is decreasing on  [Graphics:Images/QuadraticSearchMod_gr_8.gif],  
    and
        
[Graphics:Images/QuadraticSearchMod_gr_9.gif]  is increasing on  [Graphics:Images/QuadraticSearchMod_gr_10.gif].  

 

Minimization Using Derivatives

    Suppose that
  [Graphics:Images/QuadraticSearchMod_gr_11.gif]  is unimodal over  [Graphics:Images/QuadraticSearchMod_gr_12.gif]  and has a unique minimum at  [Graphics:Images/QuadraticSearchMod_gr_13.gif].  Also,  assume that  [Graphics:Images/QuadraticSearchMod_gr_14.gif]  is defined at all points in  [Graphics:Images/QuadraticSearchMod_gr_15.gif].   Let the starting value  [Graphics:Images/QuadraticSearchMod_gr_16.gif]  lie in  [Graphics:Images/QuadraticSearchMod_gr_17.gif].   If   [Graphics:Images/QuadraticSearchMod_gr_18.gif]  ,  then the minimum point  p  lies to the right of  [Graphics:Images/QuadraticSearchMod_gr_19.gif].  If   [Graphics:Images/QuadraticSearchMod_gr_20.gif]  ,  then the minimum point  p  lies to the left of  [Graphics:Images/QuadraticSearchMod_gr_21.gif].  

 

Background for Bracketing the Minimum

    Our first task is to obtain three test values,  
    
(1)            
[Graphics:Images/QuadraticSearchMod_gr_22.gif],
    so that
(2)            
[Graphics:Images/QuadraticSearchMod_gr_23.gif].

Suppose that  [Graphics:Images/QuadraticSearchMod_gr_24.gif];  then  [Graphics:Images/QuadraticSearchMod_gr_25.gif]  and the step size  h  should be chosen positive.  It is an easy task to find a value of  h  so that the three points in (1) satisfy (2).  Start with  [Graphics:Images/QuadraticSearchMod_gr_26.gif]  in formula (1) (provided that  [Graphics:Images/QuadraticSearchMod_gr_27.gif]);  if not, take  [Graphics:Images/QuadraticSearchMod_gr_28.gif],  and so on.

Case (i)      If (2) is satisfied we are done.  

Case (ii)      If  [Graphics:Images/QuadraticSearchMod_gr_29.gif], then  [Graphics:Images/QuadraticSearchMod_gr_30.gif].  
        We need to check points that lie farther to the right.  Double the step size and repeat the process.  

Case (iii)      If  [Graphics:Images/QuadraticSearchMod_gr_31.gif], we have jumped over  p  and  h  is too large.  
        We need to check values closer to  
[Graphics:Images/QuadraticSearchMod_gr_32.gif].  Reduce the step size by a factor of  [Graphics:Images/QuadraticSearchMod_gr_33.gif]  and repeat the process.  

When  
[Graphics:Images/QuadraticSearchMod_gr_34.gif],  the step size  h  should be chosen negative and then cases similar to (i), (ii), and (iii) can be used.  

 

Quadratic Approximation to Find  p

Finally, we have three points (1) that satisfy (2).  We will use quadratic interpolation to find  
[Graphics:Images/QuadraticSearchMod_gr_35.gif],  which is an approximation to  p.  The Lagrange polynomial based on the nodes in (1) is

(3)        
[Graphics:Images/QuadraticSearchMod_gr_36.gif],  

where  [Graphics:Images/QuadraticSearchMod_gr_37.gif].  

The derivative of  [Graphics:Images/QuadraticSearchMod_gr_38.gif]  is  

(4)        
[Graphics:Images/QuadraticSearchMod_gr_39.gif].  

Solving  [Graphics:Images/QuadraticSearchMod_gr_40.gif]  in the form  [Graphics:Images/QuadraticSearchMod_gr_41.gif]  yields  

(5)        
[Graphics:Images/QuadraticSearchMod_gr_42.gif].  

Multiply each term in (5) by  [Graphics:Images/QuadraticSearchMod_gr_43.gif]  and collect terms involving   [Graphics:Images/QuadraticSearchMod_gr_44.gif]:

    
[Graphics:Images/QuadraticSearchMod_gr_45.gif]  

    
[Graphics:Images/QuadraticSearchMod_gr_46.gif]  

    [Graphics:Images/QuadraticSearchMod_gr_47.gif]  

    [Graphics:Images/QuadraticSearchMod_gr_48.gif]

This last quantity is easily solved for  [Graphics:Images/QuadraticSearchMod_gr_49.gif]:

        
[Graphics:Images/QuadraticSearchMod_gr_50.gif].  

    The value  [Graphics:Images/QuadraticSearchMod_gr_51.gif]  is a better approximation to  p  than  [Graphics:Images/QuadraticSearchMod_gr_52.gif].  Hence we can replace  [Graphics:Images/QuadraticSearchMod_gr_53.gif]  with  [Graphics:Images/QuadraticSearchMod_gr_54.gif]  and repeat the two processes outlined above to determine a new  h  and a new  [Graphics:Images/QuadraticSearchMod_gr_55.gif].   Continue the iteration until the desired accuracy is achieved.  In this algorithm the derivative of the objective function  [Graphics:Images/QuadraticSearchMod_gr_56.gif]  was used implicitly in (4) to locate the minimum of the interpolatory quadratic.  The reader should note that the subroutine makes no explicit use of the derivative.  

 

Cubic Approximation to Find  p

    We now consider an approach that utilizes functional evaluations of both
  [Graphics:Images/QuadraticSearchMod_gr_57.gif]  and  [Graphics:Images/QuadraticSearchMod_gr_58.gif].  An alternative approach that uses both functional and derivative evaluations explicitly is to find the minimum of a third-degree polynomial that interpolates the objective function  [Graphics:Images/QuadraticSearchMod_gr_59.gif]  at two points.  Assume that  [Graphics:Images/QuadraticSearchMod_gr_60.gif]  is unimodal and differentiable on  [Graphics:Images/QuadraticSearchMod_gr_61.gif],  and has a unique minimum at  [Graphics:Images/QuadraticSearchMod_gr_62.gif].  Let  [Graphics:Images/QuadraticSearchMod_gr_63.gif].  Any good step size  h  can be used to start the iteration.  The Mean Value Theorem could be used to obtain  [Graphics:Images/QuadraticSearchMod_gr_64.gif]  and if  [Graphics:Images/QuadraticSearchMod_gr_65.gif]  was just to the right of the minimum, then the slope [Graphics:Images/QuadraticSearchMod_gr_66.gif] might be twice [Graphics:Images/QuadraticSearchMod_gr_67.gif] which would mean that [Graphics:Images/QuadraticSearchMod_gr_68.gif]  we do not know how much further to the right [Graphics:Images/QuadraticSearchMod_gr_69.gif] lies, so we can imagine that [Graphics:Images/QuadraticSearchMod_gr_70.gif] is close to [Graphics:Images/QuadraticSearchMod_gr_71.gif] and estimate h with the formula:    

        
[Graphics:Images/QuadraticSearchMod_gr_72.gif].

Thus  [Graphics:Images/QuadraticSearchMod_gr_73.gif].  The cubic approximating polynomial  [Graphics:Images/QuadraticSearchMod_gr_74.gif] is expanded in a Taylor series about  [Graphics:Images/QuadraticSearchMod_gr_75.gif] (which is the abscissa of the minimum).  At the minimum we have  [Graphics:Images/QuadraticSearchMod_gr_76.gif], and we write  [Graphics:Images/QuadraticSearchMod_gr_77.gif] in the form:    

(6)        
[Graphics:Images/QuadraticSearchMod_gr_78.gif],  
    and
(7)        [Graphics:Images/QuadraticSearchMod_gr_79.gif].  

The introduction of  [Graphics:Images/QuadraticSearchMod_gr_80.gif]  in the denominators of (6) and (7) will make further calculations less tiresome.  It is required that  [Graphics:Images/QuadraticSearchMod_gr_81.gif],  [Graphics:Images/QuadraticSearchMod_gr_82.gif],  [Graphics:Images/QuadraticSearchMod_gr_83.gif],  and  [Graphics:Images/QuadraticSearchMod_gr_84.gif].  To find  [Graphics:Images/QuadraticSearchMod_gr_85.gif] we define:  

(8)        
[Graphics:Images/QuadraticSearchMod_gr_86.gif],   

and we must go through several intermediate calculations before we end up with [Graphics:Images/QuadraticSearchMod_gr_87.gif].  

Use use (6) to obtain    

        
[Graphics:Images/QuadraticSearchMod_gr_88.gif]  
        
Then use (8) to get  

        [Graphics:Images/QuadraticSearchMod_gr_89.gif]  

Then substitute  [Graphics:Images/QuadraticSearchMod_gr_90.gif] and we have  

(9)        
[Graphics:Images/QuadraticSearchMod_gr_91.gif]  

Use use (7) to obtain    

        
[Graphics:Images/QuadraticSearchMod_gr_92.gif]  

        
[Graphics:Images/QuadraticSearchMod_gr_93.gif]  

Then use (8) to get  

        [Graphics:Images/QuadraticSearchMod_gr_94.gif]  

Then substitute  [Graphics:Images/QuadraticSearchMod_gr_95.gif] and we have  

(10)        [Graphics:Images/QuadraticSearchMod_gr_96.gif]  

Finally, use (7) and write  

        
[Graphics:Images/QuadraticSearchMod_gr_97.gif]

Then use (8) to get  

(11)        [Graphics:Images/QuadraticSearchMod_gr_98.gif]

Now we will use the three nonlinear equations (9), 10), (11) listed below in (12).  The order of determining the variables will be  [Graphics:Images/QuadraticSearchMod_gr_99.gif]  (the variable [Graphics:Images/QuadraticSearchMod_gr_100.gif] will be eliminated).
 

                [Graphics:Images/QuadraticSearchMod_gr_101.gif]  
(12)         [Graphics:Images/QuadraticSearchMod_gr_102.gif]  
                [Graphics:Images/QuadraticSearchMod_gr_103.gif]

First, we will find  [Graphics:Images/QuadraticSearchMod_gr_104.gif]  which is accomplished by combining the equation in (12) as follows:  

    [Graphics:Images/QuadraticSearchMod_gr_105.gif]   

Straightforward simplification yields  [Graphics:Images/QuadraticSearchMod_gr_106.gif],  therefore  [Graphics:Images/QuadraticSearchMod_gr_107.gif]  is given by  

(13)        [Graphics:Images/QuadraticSearchMod_gr_108.gif].   

Second, we will eliminate  [Graphics:Images/QuadraticSearchMod_gr_109.gif]  by combining the equation in (12) as follows, multiply the first equation by  [Graphics:Images/QuadraticSearchMod_gr_110.gif]  and add it to the third equation    

        [Graphics:Images/QuadraticSearchMod_gr_111.gif]  
        [Graphics:Images/QuadraticSearchMod_gr_112.gif]  
        
        [Graphics:Images/QuadraticSearchMod_gr_113.gif]  

which can be rearranged in the form  

        [Graphics:Images/QuadraticSearchMod_gr_114.gif]  

Now the quadratic equation can be used to solve for  [Graphics:Images/QuadraticSearchMod_gr_115.gif]  

        [Graphics:Images/QuadraticSearchMod_gr_116.gif]  

It will take a bit of effort to simplify this equation into its computationally preferred form.

        [Graphics:Images/QuadraticSearchMod_gr_117.gif]  
        
        [Graphics:Images/QuadraticSearchMod_gr_118.gif]  
        
        [Graphics:Images/QuadraticSearchMod_gr_119.gif]
Hence,  

(14)        [Graphics:Images/QuadraticSearchMod_gr_120.gif]

Therefore, the value of  [Graphics:Images/QuadraticSearchMod_gr_121.gif]  is found by substituting the calculated value of  [Graphics:Images/QuadraticSearchMod_gr_122.gif]  in (14) into the formula  [Graphics:Images/QuadraticSearchMod_gr_123.gif].  To continue the iteration process, let  [Graphics:Images/QuadraticSearchMod_gr_124.gif]  and replace [Graphics:Images/QuadraticSearchMod_gr_125.gif] and [Graphics:Images/QuadraticSearchMod_gr_126.gif] with [Graphics:Images/QuadraticSearchMod_gr_127.gif] and [Graphics:Images/QuadraticSearchMod_gr_128.gif], respectively, in formulas (12), (13), and (14).  The algorithm outlined above is not a bracketing method.  Thus determining stopping criteria becomes more problematic.  One technique would be to require that [Graphics:Images/QuadraticSearchMod_gr_129.gif],  since  [Graphics:Images/QuadraticSearchMod_gr_130.gif].



Discussion Center

Discuss/
Query

Papers/
Syllabus

Feedback/
Suggestion

Yahoo
Groups

Sirfdosti
Groups

Contact
Us

MEMBERS LOGIN
  
Email ID:
Password:

  Forgot Password?
 New User? Register!

INTERVIEW EBOOK
Get 9,000+ Interview Questions & Answers in an eBook. Interview Question & Answer Guide
  • 9,000+ Interview Questions
  • All Questions Answered
  • 5 FREE Bonuses
  • Free Upgrades
GATE RESOURCES
 
  • Gate Books
  • Training Institutes
  • Gate FAQs
  • GATE BOOKS
     
  • Mechanical Engineeering Books
  • Robotics Automations Engineering Books
  • Civil Engineering Books
  • Chemical Engineering Books
  • Environmental Engineering Books
  • Electrical Engineering Books
  • Electronics Engineering Books
  • Information Technology Books
  • Software Engineering Books
  • GATE Preparation Books
  • Exciting Offers



    GATE Exam, Gate 2009, Gate Papers, Gate Preparation & Related Pages


    GATE Overview | GATE Eligibility | Structure Of GATE | GATE Training Institutes | Colleges Providing M.Tech/M.E. | GATE Score | GATE Results | PG with Scholarships | Article On GATE | GATE Forum | GATE 2009 Exclusive | GATE 2009 Syllabus | GATE Organizing Institute | Important Dates for GATE Exam | How to Apply for GATE | Discipline / Branch Codes | GATE Syllabus for Aerospace Engineering | GATE Syllabus for Agricultural Engineering | GATE Syllabus for Architecture and Planning | GATE Syllabus for Chemical Engineering | GATE Syllabus for Chemistry | GATE Syllabus for Civil Engineering | GATE Syllabus for Computer Science / IT | GATE Syllabus for Electronics and Communication Engineering | GATE Syllabus for Engineering Sciences | GATE Syllabus for Geology and Geophysics | GATE Syllabus for Instrumentation Engineering | GATE Syllabus for Life Sciences | GATE Syllabus for Mathematics | GATE Syllabus for Mechanical Engineering | GATE Syllabus for Metallurgical Engineering | GATE Syllabus for Mining Engineering | GATE Syllabus for Physics | GATE Syllabus for Production and Industrial Engineering | GATE Syllabus for Pharmaceutical Sciences | GATE Syllabus for Textile Engineering and Fibre Science | GATE Preparation | GATE Pattern | GATE Tips & Tricks | GATE Compare Evaluation | GATE Sample Papers | GATE Downloads | Experts View on GATE | CEED 2009 | CEED 2009 Exam | Eligibility for CEED Exam | Application forms of CEED Exam | Important Dates of CEED Exam | Contact Address for CEED Exam | CEED Examination Centres | CEED Sample Papers | Discuss GATE | GATE Forum of OneStopGATE.com | GATE Exam Cities | Contact Details for GATE | Bank Details for GATE | GATE Miscellaneous Info | GATE FAQs | Advertisement on GATE | Contact Us on OneStopGATE |
    Copyright © 2024. One Stop Gate.com. All rights reserved Testimonials |Link To Us |Sitemap |Privacy Policy | Terms and Conditions|About Us
    Our Portals : Academic Tutorials | Best eBooksworld | Beyond Stats | City Details | Interview Questions | India Job Forum | Excellent Mobiles | Free Bangalore | Give Me The Code | Gog Logo | Free Classifieds | Jobs Assist | Interview Questions | One Stop FAQs | One Stop GATE | One Stop GRE | One Stop IAS | One Stop MBA | One Stop SAP | One Stop Testing | Web Hosting | Quick Site Kit | Sirf Dosti | Source Codes World | Tasty Food | Tech Archive | Software Testing Interview Questions | Free Online Exams | The Galz | Top Masala | Vyom | Vyom eBooks | Vyom International | Vyom Links | Vyoms | Vyom World
    C Interview Questions | C++ Interview Questions | Send Free SMS | Placement Papers | SMS Jokes | Cool Forwards | Romantic Shayari