OneStopGate.Com
OnestopGate   OnestopGate
   Sunday, November 17, 2024 Login  
OnestopGate
Home | Overview | Syllabus | Tutorials | FAQs | Downloads | Recommended Websites | Advertise | Payments | Contact Us | Forum
OneStopGate

GATE Resources
Gate Articles
Gate Books
Gate Colleges 
Gate Downloads 
Gate Faqs
Gate Jobs
Gate News 
Gate Sample Papers
Training Institutes

GATE Overview
Overview
GATE Eligibility
Structure Of GATE
GATE Coaching Centers
Colleges Providing M.Tech/M.E.
GATE Score
GATE Results
PG with Scholarships
Article On GATE
Admission Process For M.Tech/ MCP-PhD
GATE Topper 2012-13
GATE Forum




GATE 2025 Exclusive
Organizing Institute
Important Dates
How to Apply
Discipline Codes
GATE 2025 Exam Structure

GATE 2025 Syllabus
Aerospace Engg..
Agricultural Engg..
Architecture and Planning
Chemical Engg..
Chemistry
Civil Engg..
Computer Science / IT
Electronics & Communication Engg..
Electrical Engg..
Engineering Sciences
Geology and Geophysics
Instrumentation Engineering
Life Sciences
Mathematics
Mechanical Engg..
Metallurgical Engg..
Mining Engg..
Physics
Production & Industrial Engg..
Pharmaceutical Sciences
Textile Engineering and Fibre Science

GATE Study Material
Aerospace Engg..
Agricultural Engg..
Chemical Engg..
Chemistry
Civil Engg..
Computer Science / IT
Electronics & Communication Engg..
Electrical Engg..
Engineering Sciences
Instrumentation Engg..
Life Sciences
Mathematics
Mechanical Engg..
Physics
Pharmaceutical Sciences
Textile Engineering  and Fibre Science

GATE Preparation
GATE Pattern
GATE Tips N Tricks
Compare Evaluation
Sample Papers 
Gate Downloads 
Experts View

CEED 2013
CEED Exams
Eligibility
Application Forms
Important Dates
Contact Address
Examination Centres
CEED Sample Papers

Discuss GATE
GATE Forum
Exam Cities
Contact Details
Bank Details

Miscellaneous
Advertisment
Contact Us


Home » GATE Study Material » Mathematics » Numerical Analysis » Interpolation and Polynomial Approximation » Aitken's and Neville's Interpolation Methods

Aitken's and Neville's Interpolation Methods

Looking for GATE Preparation Material? Join & Get here now!

** Gate 2013 Question Papers.. ** CEED 2013 Results.. ** Gate 2013 Question Papers With Solutions.. ** GATE 2013 CUT-OFFs.. ** GATE 2013 Results.. **

Aitken's and Neville's Interpolation Methods

Aitken's and Neville's Interpolation Methods

 

Background

    We will now study the iterated interpolation methods of Aitken and Neville.  Alexander Craig Aitken (1895-1967) was one of  New Zealand's prominent mathematicians.  Eric Harold Neville (1889-1961) was a mathematics professor at University of Reading, Berkshire, U.K.  The algorithms we seek are remarkably similar:
    
    [Graphics:Images/NevilleAlgorithmMod_gr_1.gif]        [Graphics:Images/NevilleAlgorithmMod_gr_2.gif]  
    
    To assist with understanding these algorithms we must study iterated polynomial interpolation.  



 

Existence and Uniqueness

Theorem (Polynomial Existence and Uniqueness).  Given a set  n+1  of distinct nodes  [Graphics:Images/NevilleAlgorithmMod_gr_3.gif]   (where [Graphics:Images/NevilleAlgorithmMod_gr_4.gif] whenever [Graphics:Images/NevilleAlgorithmMod_gr_5.gif]).  There is a unique polynomial of degree [Graphics:Images/NevilleAlgorithmMod_gr_6.gif]   

        [Graphics:Images/NevilleAlgorithmMod_gr_7.gif]
        
that passes through the  n+1  points  [Graphics:Images/NevilleAlgorithmMod_gr_8.gif],  i.e.   

        [Graphics:Images/NevilleAlgorithmMod_gr_9.gif]    for    [Graphics:Images/NevilleAlgorithmMod_gr_10.gif].  

Iterated Interpolation

    We now discuss some heuristic methods of constructing interpolation polynomials recursively.  The methods of Aitken and Neville are examples of how iteration is used to construct a sequence of polynomial approximating of increasing order.

Definition (Selected Interpolation).  Given the function  [Graphics:Images/NevilleAlgorithmMod_gr_11.gif]  that is to be approximated, and the set of nodes:  

        [Graphics:Images/NevilleAlgorithmMod_gr_12.gif].

For any subset of  k  nodes

        [Graphics:Images/NevilleAlgorithmMod_gr_13.gif]  

the polynomial that agrees with  f[x]  at the points [Graphics:Images/NevilleAlgorithmMod_gr_14.gif] is denoted  

        [Graphics:Images/NevilleAlgorithmMod_gr_15.gif].

The polynomial  [Graphics:Images/NevilleAlgorithmMod_gr_16.gif]  of degree  k-1  agrees with  f[x]  at these knots [Graphics:Images/NevilleAlgorithmMod_gr_17.gif]  

        [Graphics:Images/NevilleAlgorithmMod_gr_18.gif]    for    [Graphics:Images/NevilleAlgorithmMod_gr_19.gif].  

 

Successive Interpolation

    Consider polynomial interpolation based on equally spaced nodes
    
        [Graphics:Images/NevilleAlgorithmMod_gr_20.gif]  

If all  [Graphics:Images/NevilleAlgorithmMod_gr_21.gif]  nodes are used then a loose claim is that the interpolating polynomial  [Graphics:Images/NevilleAlgorithmMod_gr_22.gif]  will have order of approximation  [Graphics:Images/NevilleAlgorithmMod_gr_23.gif].  Usually there is an abundance of nodes (think 50, 100,...) and the degree of the interpolating polynomial is small (think 2, 3, 4, 5 or 6).  Polynomials of smaller degree  [Graphics:Images/NevilleAlgorithmMod_gr_24.gif]  are of practical value:  

        

[Graphics:Images/NevilleAlgorithmMod_gr_25.gif] [Graphics:Images/NevilleAlgorithmMod_gr_26.gif]
[Graphics:Images/NevilleAlgorithmMod_gr_27.gif] [Graphics:Images/NevilleAlgorithmMod_gr_28.gif]
[Graphics:Images/NevilleAlgorithmMod_gr_29.gif] [Graphics:Images/NevilleAlgorithmMod_gr_30.gif]
[Graphics:Images/NevilleAlgorithmMod_gr_31.gif] [Graphics:Images/NevilleAlgorithmMod_gr_32.gif]
[Graphics:Images/NevilleAlgorithmMod_gr_33.gif] [Graphics:Images/NevilleAlgorithmMod_gr_34.gif]
   

    The accuracy of interpolation increases with the degree of the polynomial.  Since the polynomial constructions are unique the following theorem applies for the Lagrange Polynomial, Newton polynomial and the polynomials constructed with both Aitken's method and Neville's method too.

 

Theorem (Remainder Term).  Assume that  [Graphics:Images/NevilleAlgorithmMod_gr_35.gif] and  [Graphics:Images/NevilleAlgorithmMod_gr_36.gif] for  [Graphics:Images/NevilleAlgorithmMod_gr_37.gif]  are distinct  values.  Then   [Graphics:Images/NevilleAlgorithmMod_gr_38.gif],  where [Graphics:Images/NevilleAlgorithmMod_gr_39.gif] is a polynomial that can be used to approximate  [Graphics:Images/NevilleAlgorithmMod_gr_40.gif],  for example, the Lagrange polynomial   [Graphics:Images/NevilleAlgorithmMod_gr_41.gif],  and we write  

    [Graphics:Images/NevilleAlgorithmMod_gr_42.gif].

The Lagrange polynomial goes through the [Graphics:Images/NevilleAlgorithmMod_gr_43.gif] points  [Graphics:Images/NevilleAlgorithmMod_gr_44.gif],  i.e.

    [Graphics:Images/NevilleAlgorithmMod_gr_45.gif]    for   [Graphics:Images/NevilleAlgorithmMod_gr_46.gif].  

The remainder term  [Graphics:Images/NevilleAlgorithmMod_gr_47.gif] has the form

    [Graphics:Images/NevilleAlgorithmMod_gr_48.gif],  for some value [Graphics:Images/NevilleAlgorithmMod_gr_49.gif] that lies in the interval [Graphics:Images/NevilleAlgorithmMod_gr_50.gif].  

 

The Main Results

    In practice the subset of  [Graphics:Images/NevilleAlgorithmMod_gr_51.gif]  nodes [Graphics:Images/NevilleAlgorithmMod_gr_52.gif] is not chosen at random over the larger set [Graphics:Images/NevilleAlgorithmMod_gr_53.gif].  Instead, the nodes are clustered near a specific value of  x  at which the function   f[x]  is to be approximated by  [Graphics:Images/NevilleAlgorithmMod_gr_54.gif].  Often times it is a sequential subset of nodes  [Graphics:Images/NevilleAlgorithmMod_gr_55.gif] with  [Graphics:Images/NevilleAlgorithmMod_gr_56.gif].   It is desired to have the ability to use permutations of the list [Graphics:Images/NevilleAlgorithmMod_gr_57.gif] when constructing the interpolating polynomial.  It is also useful to use a sequence of polynomial approximations with increasing degree.  The following theorem gives the recursive step for generating such a sequence.  

 

Theorem (Recursive Polynomial Construction).  Given the function  [Graphics:Images/NevilleAlgorithmMod_gr_58.gif]  that is to be approximated, and the set of [Graphics:Images/NevilleAlgorithmMod_gr_59.gif] distinct nodes  

    [Graphics:Images/NevilleAlgorithmMod_gr_60.gif].  

For any pair of nodes  [Graphics:Images/NevilleAlgorithmMod_gr_61.gif],  suppose that we have constructed the polynomials:

    [Graphics:Images/NevilleAlgorithmMod_gr_62.gif]  which agrees with [Graphics:Images/NevilleAlgorithmMod_gr_63.gif] at the nodes  [Graphics:Images/NevilleAlgorithmMod_gr_64.gif],  

    [Graphics:Images/NevilleAlgorithmMod_gr_65.gif]  which agrees with [Graphics:Images/NevilleAlgorithmMod_gr_66.gif] at the nodes  [Graphics:Images/NevilleAlgorithmMod_gr_67.gif].  

Then   [Graphics:Images/NevilleAlgorithmMod_gr_68.gif]   is formed by making a combination of the above two polynomials

    [Graphics:Images/NevilleAlgorithmMod_gr_69.gif],
    or
    [Graphics:Images/NevilleAlgorithmMod_gr_70.gif],

and it agrees with [Graphics:Images/NevilleAlgorithmMod_gr_71.gif] at all the nodes  [Graphics:Images/NevilleAlgorithmMod_gr_72.gif].

Remark. Other equivalent ways to write  [Graphics:Images/NevilleAlgorithmMod_gr_73.gif] are

    [Graphics:Images/NevilleAlgorithmMod_gr_74.gif],
    or
    [Graphics:Images/NevilleAlgorithmMod_gr_75.gif].

 

 

The Interpolation Tableau

    The methods of Aitken and Neville use recursive polynomial construction.  The following tables indicate how the two constructions are made.  The extra column at the right (the values [Graphics:Images/NevilleAlgorithmMod_gr_128.gif])  have been included to assist with performing hand calculations.  This extra column is not necessary for hand computations.  It will be revealed that the diagonals are equivalent.  

Neville's Method.  In each new elements is computed using the element in the {same row, preceding column} and {preceding row, preceding column}.
    

 
[Graphics:Images/NevilleAlgorithmMod_gr_129.gif]
[Graphics:Images/NevilleAlgorithmMod_gr_130.gif]
[Graphics:Images/NevilleAlgorithmMod_gr_131.gif]
[Graphics:Images/NevilleAlgorithmMod_gr_132.gif]
[Graphics:Images/NevilleAlgorithmMod_gr_133.gif]
[Graphics:Images/NevilleAlgorithmMod_gr_134.gif]
 

 
[Graphics:Images/NevilleAlgorithmMod_gr_135.gif]          
[Graphics:Images/NevilleAlgorithmMod_gr_136.gif] [Graphics:Images/NevilleAlgorithmMod_gr_137.gif]        
[Graphics:Images/NevilleAlgorithmMod_gr_138.gif] [Graphics:Images/NevilleAlgorithmMod_gr_139.gif] [Graphics:Images/NevilleAlgorithmMod_gr_140.gif]      
[Graphics:Images/NevilleAlgorithmMod_gr_141.gif] [Graphics:Images/NevilleAlgorithmMod_gr_142.gif] [Graphics:Images/NevilleAlgorithmMod_gr_143.gif] [Graphics:Images/NevilleAlgorithmMod_gr_144.gif]    
[Graphics:Images/NevilleAlgorithmMod_gr_145.gif] [Graphics:Images/NevilleAlgorithmMod_gr_146.gif] [Graphics:Images/NevilleAlgorithmMod_gr_147.gif] [Graphics:Images/NevilleAlgorithmMod_gr_148.gif] [Graphics:Images/NevilleAlgorithmMod_gr_149.gif]  
[Graphics:Images/NevilleAlgorithmMod_gr_150.gif] [Graphics:Images/NevilleAlgorithmMod_gr_151.gif] [Graphics:Images/NevilleAlgorithmMod_gr_152.gif] [Graphics:Images/NevilleAlgorithmMod_gr_153.gif] [Graphics:Images/NevilleAlgorithmMod_gr_154.gif] [Graphics:Images/NevilleAlgorithmMod_gr_155.gif]
 

 
[Graphics:Images/NevilleAlgorithmMod_gr_156.gif]
[Graphics:Images/NevilleAlgorithmMod_gr_157.gif]
[Graphics:Images/NevilleAlgorithmMod_gr_158.gif]
[Graphics:Images/NevilleAlgorithmMod_gr_159.gif]
[Graphics:Images/NevilleAlgorithmMod_gr_160.gif]
[Graphics:Images/NevilleAlgorithmMod_gr_161.gif]
 


Table 1.  Neville's Method   [Graphics:Images/NevilleAlgorithmMod_gr_162.gif]    for    [Graphics:Images/NevilleAlgorithmMod_gr_163.gif].   

Aitken's Method.  In each new elements is computed using the element in the {same row, preceding column} and {top row, preceding column}.
    

 
[Graphics:Images/NevilleAlgorithmMod_gr_164.gif]
[Graphics:Images/NevilleAlgorithmMod_gr_165.gif]
[Graphics:Images/NevilleAlgorithmMod_gr_166.gif]
[Graphics:Images/NevilleAlgorithmMod_gr_167.gif]
[Graphics:Images/NevilleAlgorithmMod_gr_168.gif]
[Graphics:Images/NevilleAlgorithmMod_gr_169.gif]
 

 
[Graphics:Images/NevilleAlgorithmMod_gr_170.gif]          
[Graphics:Images/NevilleAlgorithmMod_gr_171.gif] [Graphics:Images/NevilleAlgorithmMod_gr_172.gif]        
[Graphics:Images/NevilleAlgorithmMod_gr_173.gif] [Graphics:Images/NevilleAlgorithmMod_gr_174.gif] [Graphics:Images/NevilleAlgorithmMod_gr_175.gif]      
[Graphics:Images/NevilleAlgorithmMod_gr_176.gif] [Graphics:Images/NevilleAlgorithmMod_gr_177.gif] [Graphics:Images/NevilleAlgorithmMod_gr_178.gif] [Graphics:Images/NevilleAlgorithmMod_gr_179.gif]    
[Graphics:Images/NevilleAlgorithmMod_gr_180.gif] [Graphics:Images/NevilleAlgorithmMod_gr_181.gif] [Graphics:Images/NevilleAlgorithmMod_gr_182.gif] [Graphics:Images/NevilleAlgorithmMod_gr_183.gif] [Graphics:Images/NevilleAlgorithmMod_gr_184.gif]  
[Graphics:Images/NevilleAlgorithmMod_gr_185.gif] [Graphics:Images/NevilleAlgorithmMod_gr_186.gif] [Graphics:Images/NevilleAlgorithmMod_gr_187.gif] [Graphics:Images/NevilleAlgorithmMod_gr_188.gif] [Graphics:Images/NevilleAlgorithmMod_gr_189.gif] [Graphics:Images/NevilleAlgorithmMod_gr_190.gif]
 

 
[Graphics:Images/NevilleAlgorithmMod_gr_191.gif]
[Graphics:Images/NevilleAlgorithmMod_gr_192.gif]
[Graphics:Images/NevilleAlgorithmMod_gr_193.gif]
[Graphics:Images/NevilleAlgorithmMod_gr_194.gif]
[Graphics:Images/NevilleAlgorithmMod_gr_195.gif]
[Graphics:Images/NevilleAlgorithmMod_gr_196.gif]
 


Table 2.  Aitken's Method   [Graphics:Images/NevilleAlgorithmMod_gr_197.gif]    for    [Graphics:Images/NevilleAlgorithmMod_gr_198.gif].   

Exploration  Aitken and Neville Methods  Scroll down to this exploration.

 

Recursive Programming

    Aitken's and Neville's polynomials can be programmed recursively with the following subroutines.

Computer Programs  Aitken's and Neville's Interpolation Methods

Mathematica Subroutine (Neville Polynomials).

[Graphics:Images/NevilleAlgorithmMod_gr_199.gif]

Mathematica Subroutine (Aitken Polynomials).

[Graphics:Images/NevilleAlgorithmMod_gr_200.gif]

 

The Rearranged Nodes

    Aitken's and Neville's methods agree on the diagonal, and one usually tests for convergence of these values.  If  [Graphics:Images/NevilleAlgorithmMod_gr_373.gif]  is to be approximated at  [Graphics:Images/NevilleAlgorithmMod_gr_374.gif]  then one improvement that can be made is to rearrange the nodes so that they are "closer to [Graphics:Images/NevilleAlgorithmMod_gr_375.gif]" in the sense that is explained in the following result.  
    
Theorem(Rearrangement of Nodes).   Given the function  [Graphics:Images/NevilleAlgorithmMod_gr_376.gif],  and the set of  [Graphics:Images/NevilleAlgorithmMod_gr_377.gif] distinct nodes  [Graphics:Images/NevilleAlgorithmMod_gr_378.gif].  If  [Graphics:Images/NevilleAlgorithmMod_gr_379.gif]  is to be approximated at the point  [Graphics:Images/NevilleAlgorithmMod_gr_380.gif] ,  then let  

    [Graphics:Images/NevilleAlgorithmMod_gr_381.gif]  
    
be the rearrangement of  [Graphics:Images/NevilleAlgorithmMod_gr_382.gif] such that [Graphics:Images/NevilleAlgorithmMod_gr_383.gif] is an increasing sequence.  Then the diagonal terms  

    [Graphics:Images/NevilleAlgorithmMod_gr_384.gif]  

will converge to  [Graphics:Images/NevilleAlgorithmMod_gr_385.gif]  faster than any other rearrangement of the nodes.

 

The Improved Interpolation Tableau

    The tables for Aitken's and Neville's methods can be stored in a two-dimensional array and do not need long subscript lists as shown in the following tables.  

 

Neville's Method.  In each new elements is computed using the element in the {same row, preceding column} and {preceding row, preceding column}.
    

 
[Graphics:Images/NevilleAlgorithmMod_gr_423.gif]
[Graphics:Images/NevilleAlgorithmMod_gr_424.gif]
[Graphics:Images/NevilleAlgorithmMod_gr_425.gif]
[Graphics:Images/NevilleAlgorithmMod_gr_426.gif]
[Graphics:Images/NevilleAlgorithmMod_gr_427.gif]
[Graphics:Images/NevilleAlgorithmMod_gr_428.gif]
 

 
[Graphics:Images/NevilleAlgorithmMod_gr_429.gif]          
[Graphics:Images/NevilleAlgorithmMod_gr_430.gif] [Graphics:Images/NevilleAlgorithmMod_gr_431.gif]        
[Graphics:Images/NevilleAlgorithmMod_gr_432.gif] [Graphics:Images/NevilleAlgorithmMod_gr_433.gif] [Graphics:Images/NevilleAlgorithmMod_gr_434.gif]      
[Graphics:Images/NevilleAlgorithmMod_gr_435.gif] [Graphics:Images/NevilleAlgorithmMod_gr_436.gif] [Graphics:Images/NevilleAlgorithmMod_gr_437.gif] [Graphics:Images/NevilleAlgorithmMod_gr_438.gif]    
[Graphics:Images/NevilleAlgorithmMod_gr_439.gif] [Graphics:Images/NevilleAlgorithmMod_gr_440.gif] [Graphics:Images/NevilleAlgorithmMod_gr_441.gif] [Graphics:Images/NevilleAlgorithmMod_gr_442.gif] [Graphics:Images/NevilleAlgorithmMod_gr_443.gif]  
[Graphics:Images/NevilleAlgorithmMod_gr_444.gif] [Graphics:Images/NevilleAlgorithmMod_gr_445.gif] [Graphics:Images/NevilleAlgorithmMod_gr_446.gif] [Graphics:Images/NevilleAlgorithmMod_gr_447.gif] [Graphics:Images/NevilleAlgorithmMod_gr_448.gif] [Graphics:Images/NevilleAlgorithmMod_gr_449.gif]
 

 
[Graphics:Images/NevilleAlgorithmMod_gr_450.gif]
[Graphics:Images/NevilleAlgorithmMod_gr_451.gif]
[Graphics:Images/NevilleAlgorithmMod_gr_452.gif]
[Graphics:Images/NevilleAlgorithmMod_gr_453.gif]
[Graphics:Images/NevilleAlgorithmMod_gr_454.gif]
[Graphics:Images/NevilleAlgorithmMod_gr_455.gif]
 


Table 3.  Neville's Method   [Graphics:Images/NevilleAlgorithmMod_gr_456.gif]    for    [Graphics:Images/NevilleAlgorithmMod_gr_457.gif].   

Aitken's Method.  In each new elements is computed using the element in the {same row, preceding column} and {top row, preceding column}.
  

 
[Graphics:Images/NevilleAlgorithmMod_gr_458.gif]
[Graphics:Images/NevilleAlgorithmMod_gr_459.gif]
[Graphics:Images/NevilleAlgorithmMod_gr_460.gif]
[Graphics:Images/NevilleAlgorithmMod_gr_461.gif]
[Graphics:Images/NevilleAlgorithmMod_gr_462.gif]
[Graphics:Images/NevilleAlgorithmMod_gr_463.gif]
 

 
[Graphics:Images/NevilleAlgorithmMod_gr_464.gif]          
[Graphics:Images/NevilleAlgorithmMod_gr_465.gif] [Graphics:Images/NevilleAlgorithmMod_gr_466.gif]        
[Graphics:Images/NevilleAlgorithmMod_gr_467.gif] [Graphics:Images/NevilleAlgorithmMod_gr_468.gif] [Graphics:Images/NevilleAlgorithmMod_gr_469.gif]      
[Graphics:Images/NevilleAlgorithmMod_gr_470.gif] [Graphics:Images/NevilleAlgorithmMod_gr_471.gif] [Graphics:Images/NevilleAlgorithmMod_gr_472.gif] [Graphics:Images/NevilleAlgorithmMod_gr_473.gif]    
[Graphics:Images/NevilleAlgorithmMod_gr_474.gif] [Graphics:Images/NevilleAlgorithmMod_gr_475.gif] [Graphics:Images/NevilleAlgorithmMod_gr_476.gif] [Graphics:Images/NevilleAlgorithmMod_gr_477.gif] [Graphics:Images/NevilleAlgorithmMod_gr_478.gif]  
[Graphics:Images/NevilleAlgorithmMod_gr_479.gif] [Graphics:Images/NevilleAlgorithmMod_gr_480.gif] [Graphics:Images/NevilleAlgorithmMod_gr_481.gif] [Graphics:Images/NevilleAlgorithmMod_gr_482.gif] [Graphics:Images/NevilleAlgorithmMod_gr_483.gif] [Graphics:Images/NevilleAlgorithmMod_gr_484.gif]
 

 
[Graphics:Images/NevilleAlgorithmMod_gr_485.gif]
[Graphics:Images/NevilleAlgorithmMod_gr_486.gif]
[Graphics:Images/NevilleAlgorithmMod_gr_487.gif]
[Graphics:Images/NevilleAlgorithmMod_gr_488.gif]
[Graphics:Images/NevilleAlgorithmMod_gr_489.gif]
[Graphics:Images/NevilleAlgorithmMod_gr_490.gif]
 


Table 4.  Aitken's Method
   [Graphics:Images/NevilleAlgorithmMod_gr_491.gif]    for    [Graphics:Images/NevilleAlgorithmMod_gr_492.gif].   

 

Mathematica Subroutine (Neville Interpolation).

[Graphics:Images/NevilleAlgorithmMod_gr_493.gif]

Mathematica Subroutine (Aitken Interpolation).

[Graphics:Images/NevilleAlgorithmMod_gr_494.gif]

 

The Improved Subroutines using Matrices

    The subroutines for Aitken's and Neville's methods can be modified to use matrices, this is the final improvement.

Algorithm (Neville Interpolation).   Given the nodes [Graphics:Images/NevilleAlgorithmMod_gr_505.gif] the Neville interpolation at [Graphics:Images/NevilleAlgorithmMod_gr_506.gif] is  [Graphics:Images/NevilleAlgorithmMod_gr_507.gif] where we compute:

        [Graphics:Images/NevilleAlgorithmMod_gr_508.gif]    

Mathematica Subroutine (Neville Interpolation).

[Graphics:Images/NevilleAlgorithmMod_gr_509.gif]

Algorithm (Aitken Interpolation).   Given the nodes [Graphics:Images/NevilleAlgorithmMod_gr_510.gif] the Aitken interpolation at [Graphics:Images/NevilleAlgorithmMod_gr_511.gif] is  [Graphics:Images/NevilleAlgorithmMod_gr_512.gif] where we compute:

        [Graphics:Images/NevilleAlgorithmMod_gr_513.gif]  

 

Mathematica Subroutine (Aitken Interpolation).

[Graphics:Images/NevilleAlgorithmMod_gr_514.gif]



Discussion Center

Discuss/
Query

Papers/
Syllabus

Feedback/
Suggestion

Yahoo
Groups

Sirfdosti
Groups

Contact
Us

MEMBERS LOGIN
  
Email ID:
Password:

  Forgot Password?
 New User? Register!

INTERVIEW EBOOK
Get 9,000+ Interview Questions & Answers in an eBook. Interview Question & Answer Guide
  • 9,000+ Interview Questions
  • All Questions Answered
  • 5 FREE Bonuses
  • Free Upgrades
GATE RESOURCES
 
  • Gate Books
  • Training Institutes
  • Gate FAQs
  • GATE BOOKS
     
  • Mechanical Engineeering Books
  • Robotics Automations Engineering Books
  • Civil Engineering Books
  • Chemical Engineering Books
  • Environmental Engineering Books
  • Electrical Engineering Books
  • Electronics Engineering Books
  • Information Technology Books
  • Software Engineering Books
  • GATE Preparation Books
  • Exciting Offers



    GATE Exam, Gate 2009, Gate Papers, Gate Preparation & Related Pages


    GATE Overview | GATE Eligibility | Structure Of GATE | GATE Training Institutes | Colleges Providing M.Tech/M.E. | GATE Score | GATE Results | PG with Scholarships | Article On GATE | GATE Forum | GATE 2009 Exclusive | GATE 2009 Syllabus | GATE Organizing Institute | Important Dates for GATE Exam | How to Apply for GATE | Discipline / Branch Codes | GATE Syllabus for Aerospace Engineering | GATE Syllabus for Agricultural Engineering | GATE Syllabus for Architecture and Planning | GATE Syllabus for Chemical Engineering | GATE Syllabus for Chemistry | GATE Syllabus for Civil Engineering | GATE Syllabus for Computer Science / IT | GATE Syllabus for Electronics and Communication Engineering | GATE Syllabus for Engineering Sciences | GATE Syllabus for Geology and Geophysics | GATE Syllabus for Instrumentation Engineering | GATE Syllabus for Life Sciences | GATE Syllabus for Mathematics | GATE Syllabus for Mechanical Engineering | GATE Syllabus for Metallurgical Engineering | GATE Syllabus for Mining Engineering | GATE Syllabus for Physics | GATE Syllabus for Production and Industrial Engineering | GATE Syllabus for Pharmaceutical Sciences | GATE Syllabus for Textile Engineering and Fibre Science | GATE Preparation | GATE Pattern | GATE Tips & Tricks | GATE Compare Evaluation | GATE Sample Papers | GATE Downloads | Experts View on GATE | CEED 2009 | CEED 2009 Exam | Eligibility for CEED Exam | Application forms of CEED Exam | Important Dates of CEED Exam | Contact Address for CEED Exam | CEED Examination Centres | CEED Sample Papers | Discuss GATE | GATE Forum of OneStopGATE.com | GATE Exam Cities | Contact Details for GATE | Bank Details for GATE | GATE Miscellaneous Info | GATE FAQs | Advertisement on GATE | Contact Us on OneStopGATE |
    Copyright © 2024. One Stop Gate.com. All rights reserved Testimonials |Link To Us |Sitemap |Privacy Policy | Terms and Conditions|About Us
    Our Portals : Academic Tutorials | Best eBooksworld | Beyond Stats | City Details | Interview Questions | India Job Forum | Excellent Mobiles | Free Bangalore | Give Me The Code | Gog Logo | Free Classifieds | Jobs Assist | Interview Questions | One Stop FAQs | One Stop GATE | One Stop GRE | One Stop IAS | One Stop MBA | One Stop SAP | One Stop Testing | Web Hosting | Quick Site Kit | Sirf Dosti | Source Codes World | Tasty Food | Tech Archive | Software Testing Interview Questions | Free Online Exams | The Galz | Top Masala | Vyom | Vyom eBooks | Vyom International | Vyom Links | Vyoms | Vyom World
    C Interview Questions | C++ Interview Questions | Send Free SMS | Placement Papers | SMS Jokes | Cool Forwards | Romantic Shayari