OneStopGate.Com
OnestopGate   OnestopGate
   Sunday, November 17, 2024 Login  
OnestopGate
Home | Overview | Syllabus | Tutorials | FAQs | Downloads | Recommended Websites | Advertise | Payments | Contact Us | Forum
OneStopGate

GATE Resources
Gate Articles
Gate Books
Gate Colleges 
Gate Downloads 
Gate Faqs
Gate Jobs
Gate News 
Gate Sample Papers
Training Institutes

GATE Overview
Overview
GATE Eligibility
Structure Of GATE
GATE Coaching Centers
Colleges Providing M.Tech/M.E.
GATE Score
GATE Results
PG with Scholarships
Article On GATE
Admission Process For M.Tech/ MCP-PhD
GATE Topper 2012-13
GATE Forum




GATE 2025 Exclusive
Organizing Institute
Important Dates
How to Apply
Discipline Codes
GATE 2025 Exam Structure

GATE 2025 Syllabus
Aerospace Engg..
Agricultural Engg..
Architecture and Planning
Chemical Engg..
Chemistry
Civil Engg..
Computer Science / IT
Electronics & Communication Engg..
Electrical Engg..
Engineering Sciences
Geology and Geophysics
Instrumentation Engineering
Life Sciences
Mathematics
Mechanical Engg..
Metallurgical Engg..
Mining Engg..
Physics
Production & Industrial Engg..
Pharmaceutical Sciences
Textile Engineering and Fibre Science

GATE Study Material
Aerospace Engg..
Agricultural Engg..
Chemical Engg..
Chemistry
Civil Engg..
Computer Science / IT
Electronics & Communication Engg..
Electrical Engg..
Engineering Sciences
Instrumentation Engg..
Life Sciences
Mathematics
Mechanical Engg..
Physics
Pharmaceutical Sciences
Textile Engineering  and Fibre Science

GATE Preparation
GATE Pattern
GATE Tips N Tricks
Compare Evaluation
Sample Papers 
Gate Downloads 
Experts View

CEED 2013
CEED Exams
Eligibility
Application Forms
Important Dates
Contact Address
Examination Centres
CEED Sample Papers

Discuss GATE
GATE Forum
Exam Cities
Contact Details
Bank Details

Miscellaneous
Advertisment
Contact Us


Home » GATE Study Material » Mathematics » Numerical Analysis » Interpolation and Polynomial Approximation » Legendre Polynomials

Legendre Polynomials

Looking for GATE Preparation Material? Join & Get here now!

** Gate 2013 Question Papers.. ** CEED 2013 Results.. ** Gate 2013 Question Papers With Solutions.. ** GATE 2013 CUT-OFFs.. ** GATE 2013 Results.. **

Legendre Polynomials

Legendre Polynomials

 

Background

    We have seen how Newton polynomials and Lagrange polynomials are used to approximate [Graphics:Images/LegendrePolyMod_gr_1.gif] on an interval [Graphics:Images/LegendrePolyMod_gr_2.gif].  The constructions were based on a discrete set of interpolation points in the interval.  We will now consider "least squares" approximations where the polynomial is "close" to the function throughout the interval [Graphics:Images/LegendrePolyMod_gr_3.gif].  Our final construction will use Legendre polynomials that were first studied by the French mathematician Adrien-Marie Legendre (1752-1833).
    
    Given a set of interpolation points [Graphics:Images/LegendrePolyMod_gr_4.gif] the Newton polynomial and Lagrange polynomial are algebraically equivalent, and they are equivalent to the polynomial constructed with Mathematica's built in subroutine "InterpolatingPolynomial."  The subroutine "Fit" can be used to construct the discrete least squares fit polynomial.

 

Definition (Discrete Least Squares Approximation)  Given a function  [Graphics:Images/LegendrePolyMod_gr_5.gif] on  [Graphics:Images/LegendrePolyMod_gr_6.gif]and [Graphics:Images/LegendrePolyMod_gr_7.gif] equally spaced nodes [Graphics:Images/LegendrePolyMod_gr_8.gif]  and interpolation points [Graphics:Images/LegendrePolyMod_gr_9.gif].  The [Graphics:Images/LegendrePolyMod_gr_10.gif] degree polynomial  [Graphics:Images/LegendrePolyMod_gr_11.gif]  is the discrete least squares interpolation fit provided that the coefficients  [Graphics:Images/LegendrePolyMod_gr_12.gif]  of  [Graphics:Images/LegendrePolyMod_gr_13.gif]  minimize the sum

            [Graphics:Images/LegendrePolyMod_gr_14.gif]

Theorem (Discrete Least Squares Approximation)  The polynomial  [Graphics:Images/LegendrePolyMod_gr_15.gif]  satisfies the [Graphics:Images/LegendrePolyMod_gr_16.gif] equations  
    
            [Graphics:Images/LegendrePolyMod_gr_17.gif]    for   [Graphics:Images/LegendrePolyMod_gr_18.gif].  

These equations can be simplified to obtain the normal equations for finding the coefficients [Graphics:Images/LegendrePolyMod_gr_19.gif]  

             [Graphics:Images/LegendrePolyMod_gr_20.gif]    for   [Graphics:Images/LegendrePolyMod_gr_21.gif].   

Remark. This is the degenerate case of a least squares fit (i.e. if there were  [Graphics:Images/LegendrePolyMod_gr_22.gif] data points we would have used  [Graphics:Images/LegendrePolyMod_gr_23.gif]  instead of  [Graphics:Images/LegendrePolyMod_gr_24.gif]).
Information on polynomial curve fitting can be found in the module Least Squares Polynomials.

    The following example shows that if n+1 points are used to find the discrete least squares approximation polynomial of degree n , then it is the same as the Newton (and Lagrange) interpolation polynomial that passes through the n+1 points.  

 

Continuous Least Squares Approximation

    Another method for approximating  [Graphics:Images/LegendrePolyMod_gr_68.gif]  on an interval  [Graphics:Images/LegendrePolyMod_gr_69.gif]  is to find a polynomial  [Graphics:Images/LegendrePolyMod_gr_70.gif] with a small average error over the entire interval.  This can be accomplished by integrating the square of the difference  [Graphics:Images/LegendrePolyMod_gr_71.gif]  over  [Graphics:Images/LegendrePolyMod_gr_72.gif].  The following derivation is done on an arbitrary interval  [Graphics:Images/LegendrePolyMod_gr_73.gif], but we will soon see that it is advantageous to use the interval  [Graphics:Images/LegendrePolyMod_gr_74.gif].  

Definition (ContinuousLeast Squares Approximation)  Given a function  [Graphics:Images/LegendrePolyMod_gr_75.gif] on  [Graphics:Images/LegendrePolyMod_gr_76.gif].  The nth degree polynomial  [Graphics:Images/LegendrePolyMod_gr_77.gif]  is the continuous least squares fit for [Graphics:Images/LegendrePolyMod_gr_78.gif] provided that the coefficients [Graphics:Images/LegendrePolyMod_gr_79.gif] minimize the integral  

            [Graphics:Images/LegendrePolyMod_gr_80.gif].

Theorem (Continuous Least Squares Approximation)  The polynomial  [Graphics:Images/LegendrePolyMod_gr_81.gif]  satisfies the [Graphics:Images/LegendrePolyMod_gr_82.gif] equations  
    
            [Graphics:Images/LegendrePolyMod_gr_83.gif]    for   [Graphics:Images/LegendrePolyMod_gr_84.gif].  

These equations can be simplified to obtain the normal equations for finding the coefficients [Graphics:Images/LegendrePolyMod_gr_85.gif]  

             [Graphics:Images/LegendrePolyMod_gr_86.gif]    for   [Graphics:Images/LegendrePolyMod_gr_87.gif].  

 

Orthogonal Polynomials

    To start we need some background regarding an the inner product.  

Definition ( Inner Product ).  Consider the vector space of functions whose domain is the interval [Graphics:Images/LegendrePolyMod_gr_194.gif].  We define the inner product of two functions [Graphics:Images/LegendrePolyMod_gr_195.gif] as follows  

        [Graphics:Images/LegendrePolyMod_gr_196.gif].  

Mathematica Function ( Inner Product ). To compute the inner product of two real functions over [Graphics:Images/LegendrePolyMod_gr_197.gif].  

[Graphics:Images/LegendrePolyMod_gr_198.gif]

Remark.  The inner product is a continuous analog to the ordinary dot product that is studied in linear algebra.  If the integral is zero then [Graphics:Images/LegendrePolyMod_gr_199.gif] are said to be orthogonal to each other on [Graphics:Images/LegendrePolyMod_gr_200.gif].  All the functions we use are assumed to be square-integrable, i. e. [Graphics:Images/LegendrePolyMod_gr_201.gif].  

 

Basis Functions

    A basis for a vector space V of functions is a set of linear independent functions [Graphics:Images/LegendrePolyMod_gr_246.gif]  which has the property that any [Graphics:Images/LegendrePolyMod_gr_247.gif] can be written uniquely as a linear combination  
    
        [Graphics:Images/LegendrePolyMod_gr_248.gif].  

Fact.  The set  [Graphics:Images/LegendrePolyMod_gr_249.gif]  is a basis for the set [Graphics:Images/LegendrePolyMod_gr_250.gif] of all polynomials and power series.

Definition (Orthogonal Basis)  The set  [Graphics:Images/LegendrePolyMod_gr_251.gif]   is said to be an orthogonal basis on [Graphics:Images/LegendrePolyMod_gr_252.gif] provided that  

        [Graphics:Images/LegendrePolyMod_gr_253.gif]   when  [Graphics:Images/LegendrePolyMod_gr_254.gif],
    and  
        [Graphics:Images/LegendrePolyMod_gr_255.gif]  when  [Graphics:Images/LegendrePolyMod_gr_256.gif].

In the special case when [Graphics:Images/LegendrePolyMod_gr_257.gif]  for [Graphics:Images/LegendrePolyMod_gr_258.gif] we say that [Graphics:Images/LegendrePolyMod_gr_259.gif] is an orthonormal basis.    

Theorem ( Gram-Schmidt Orthogonalization ).  Given  [Graphics:Images/LegendrePolyMod_gr_260.gif]  we can construct a set of orthogonal polynomials  [Graphics:Images/LegendrePolyMod_gr_261.gif]  over the interval  [Graphics:Images/LegendrePolyMod_gr_262.gif]  as follows:

        Use the inner product  [Graphics:Images/LegendrePolyMod_gr_263.gif],  and define  

        [Graphics:Images/LegendrePolyMod_gr_264.gif]        

        [Graphics:Images/LegendrePolyMod_gr_265.gif]

        [Graphics:Images/LegendrePolyMod_gr_266.gif]  

Remark.  A set of orthonormal polynomials over the interval  [Graphics:Images/LegendrePolyMod_gr_267.gif]  is  [Graphics:Images/LegendrePolyMod_gr_268.gif].   

Remark.  When these polynomials are constructed over the interval [Graphics:Images/LegendrePolyMod_gr_269.gif] and normalized so that [Graphics:Images/LegendrePolyMod_gr_270.gif] they are called the Legendre polynomials, and form a basis for the set of polynomials and power series over the interval [Graphics:Images/LegendrePolyMod_gr_271.gif].  

Corollary 1.  The set of orthogonal polynomials [Graphics:Images/LegendrePolyMod_gr_272.gif] is a basis for the set V of all polynomials and power series over the interval [Graphics:Images/LegendrePolyMod_gr_273.gif].  

Corollary 2.  The set of Legendre polynomials [Graphics:Images/LegendrePolyMod_gr_274.gif] is a basis for the set V of all polynomials and power series over the interval [Graphics:Images/LegendrePolyMod_gr_275.gif].  

Proof  Legendre Polynomials  

 

An Alternate Recursive Formula

    Another way to recursively define the Legendre polynomials is
    
        [Graphics:Images/LegendrePolyMod_gr_305.gif]

 

 

Efficient Computations

    We now present the efficient way to compute the continuous least squares approximation.  It has an additional feature that each successive term increases the degree of approximation.  Hence, an increasing sequence of of approximations can obtained recursively:  
    
        [Graphics:Images/LegendrePolyMod_gr_315.gif]  
        
Theorem (Legendre Series Approximation)  The Legendre series approximation of order [Graphics:Images/LegendrePolyMod_gr_316.gif] for a function [Graphics:Images/LegendrePolyMod_gr_317.gif] over  [Graphics:Images/LegendrePolyMod_gr_318.gif]  is given by
    
        [Graphics:Images/LegendrePolyMod_gr_319.gif]

where  [Graphics:Images/LegendrePolyMod_gr_320.gif]  is the [Graphics:Images/LegendrePolyMod_gr_321.gif] Legendre polynomial and

        [Graphics:Images/LegendrePolyMod_gr_322.gif]

 

The Shifted Legendre Polynomials

    The "shifted Legendre polynomials
    
        [Graphics:Images/LegendrePolyMod_gr_346.gif]  are orthogonal on [Graphics:Images/LegendrePolyMod_gr_347.gif],  
    
    where [Graphics:Images/LegendrePolyMod_gr_348.gif] are the Legendre polynomials on [Graphics:Images/LegendrePolyMod_gr_349.gif].   

Exploration.

 

Theorem (Shifted Legendre Series Interpolation)  The shifted Legendre series approximation of order [Graphics:Images/LegendrePolyMod_gr_362.gif] for a function [Graphics:Images/LegendrePolyMod_gr_363.gif] over  [Graphics:Images/LegendrePolyMod_gr_364.gif]  is given by
    
        [Graphics:Images/LegendrePolyMod_gr_365.gif]

where  [Graphics:Images/LegendrePolyMod_gr_366.gif]  is the [Graphics:Images/LegendrePolyMod_gr_367.gif] shifted Legendre polynomial and

        [Graphics:Images/LegendrePolyMod_gr_368.gif]



Discussion Center

Discuss/
Query

Papers/
Syllabus

Feedback/
Suggestion

Yahoo
Groups

Sirfdosti
Groups

Contact
Us

MEMBERS LOGIN
  
Email ID:
Password:

  Forgot Password?
 New User? Register!

INTERVIEW EBOOK
Get 9,000+ Interview Questions & Answers in an eBook. Interview Question & Answer Guide
  • 9,000+ Interview Questions
  • All Questions Answered
  • 5 FREE Bonuses
  • Free Upgrades
GATE RESOURCES
 
  • Gate Books
  • Training Institutes
  • Gate FAQs
  • GATE BOOKS
     
  • Mechanical Engineeering Books
  • Robotics Automations Engineering Books
  • Civil Engineering Books
  • Chemical Engineering Books
  • Environmental Engineering Books
  • Electrical Engineering Books
  • Electronics Engineering Books
  • Information Technology Books
  • Software Engineering Books
  • GATE Preparation Books
  • Exciting Offers



    GATE Exam, Gate 2009, Gate Papers, Gate Preparation & Related Pages


    GATE Overview | GATE Eligibility | Structure Of GATE | GATE Training Institutes | Colleges Providing M.Tech/M.E. | GATE Score | GATE Results | PG with Scholarships | Article On GATE | GATE Forum | GATE 2009 Exclusive | GATE 2009 Syllabus | GATE Organizing Institute | Important Dates for GATE Exam | How to Apply for GATE | Discipline / Branch Codes | GATE Syllabus for Aerospace Engineering | GATE Syllabus for Agricultural Engineering | GATE Syllabus for Architecture and Planning | GATE Syllabus for Chemical Engineering | GATE Syllabus for Chemistry | GATE Syllabus for Civil Engineering | GATE Syllabus for Computer Science / IT | GATE Syllabus for Electronics and Communication Engineering | GATE Syllabus for Engineering Sciences | GATE Syllabus for Geology and Geophysics | GATE Syllabus for Instrumentation Engineering | GATE Syllabus for Life Sciences | GATE Syllabus for Mathematics | GATE Syllabus for Mechanical Engineering | GATE Syllabus for Metallurgical Engineering | GATE Syllabus for Mining Engineering | GATE Syllabus for Physics | GATE Syllabus for Production and Industrial Engineering | GATE Syllabus for Pharmaceutical Sciences | GATE Syllabus for Textile Engineering and Fibre Science | GATE Preparation | GATE Pattern | GATE Tips & Tricks | GATE Compare Evaluation | GATE Sample Papers | GATE Downloads | Experts View on GATE | CEED 2009 | CEED 2009 Exam | Eligibility for CEED Exam | Application forms of CEED Exam | Important Dates of CEED Exam | Contact Address for CEED Exam | CEED Examination Centres | CEED Sample Papers | Discuss GATE | GATE Forum of OneStopGATE.com | GATE Exam Cities | Contact Details for GATE | Bank Details for GATE | GATE Miscellaneous Info | GATE FAQs | Advertisement on GATE | Contact Us on OneStopGATE |
    Copyright © 2024. One Stop Gate.com. All rights reserved Testimonials |Link To Us |Sitemap |Privacy Policy | Terms and Conditions|About Us
    Our Portals : Academic Tutorials | Best eBooksworld | Beyond Stats | City Details | Interview Questions | India Job Forum | Excellent Mobiles | Free Bangalore | Give Me The Code | Gog Logo | Free Classifieds | Jobs Assist | Interview Questions | One Stop FAQs | One Stop GATE | One Stop GRE | One Stop IAS | One Stop MBA | One Stop SAP | One Stop Testing | Web Hosting | Quick Site Kit | Sirf Dosti | Source Codes World | Tasty Food | Tech Archive | Software Testing Interview Questions | Free Online Exams | The Galz | Top Masala | Vyom | Vyom eBooks | Vyom International | Vyom Links | Vyoms | Vyom World
    C Interview Questions | C++ Interview Questions | Send Free SMS | Placement Papers | SMS Jokes | Cool Forwards | Romantic Shayari