OneStopGate.Com
OnestopGate   OnestopGate
   Friday, May 17, 2024 Login  
OnestopGate
Home | Overview | Syllabus | Tutorials | FAQs | Downloads | Recommended Websites | Advertise | Payments | Contact Us | Forum
OneStopGate

GATE Resources
Gate Articles
Gate Books
Gate Colleges 
Gate Downloads 
Gate Faqs
Gate Jobs
Gate News 
Gate Sample Papers
Training Institutes

GATE Overview
Overview
GATE Eligibility
Structure Of GATE
GATE Coaching Centers
Colleges Providing M.Tech/M.E.
GATE Score
GATE Results
PG with Scholarships
Article On GATE
Admission Process For M.Tech/ MCP-PhD
GATE Topper 2012-13
GATE Forum




GATE 2025 Exclusive
Organizing Institute
Important Dates
How to Apply
Discipline Codes
GATE 2025 Exam Structure

GATE 2025 Syllabus
Aerospace Engg..
Agricultural Engg..
Architecture and Planning
Chemical Engg..
Chemistry
Civil Engg..
Computer Science / IT
Electronics & Communication Engg..
Electrical Engg..
Engineering Sciences
Geology and Geophysics
Instrumentation Engineering
Life Sciences
Mathematics
Mechanical Engg..
Metallurgical Engg..
Mining Engg..
Physics
Production & Industrial Engg..
Pharmaceutical Sciences
Textile Engineering and Fibre Science

GATE Study Material
Aerospace Engg..
Agricultural Engg..
Chemical Engg..
Chemistry
Civil Engg..
Computer Science / IT
Electronics & Communication Engg..
Electrical Engg..
Engineering Sciences
Instrumentation Engg..
Life Sciences
Mathematics
Mechanical Engg..
Physics
Pharmaceutical Sciences
Textile Engineering  and Fibre Science

GATE Preparation
GATE Pattern
GATE Tips N Tricks
Compare Evaluation
Sample Papers 
Gate Downloads 
Experts View

CEED 2013
CEED Exams
Eligibility
Application Forms
Important Dates
Contact Address
Examination Centres
CEED Sample Papers

Discuss GATE
GATE Forum
Exam Cities
Contact Details
Bank Details

Miscellaneous
Advertisment
Contact Us


Home » GATE Study Material » Chemical Engineering » General Chemical Engineering Concepts » The Laws List » The laws list: C

The laws list: C

Looking for GATE Preparation Material? Join & Get here now!

** Gate 2013 Question Papers.. ** CEED 2013 Results.. ** Gate 2013 Question Papers With Solutions.. ** GATE 2013 CUT-OFFs.. ** GATE 2013 Results.. **

The laws list: C

The laws list C

candela to Curie-Weiss law.


Jump links.

A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z



C.
candela; cd
 
The fundamental SI unit of luminous intensity defined as the luminous intensity in a given direction of a source that emits monochromatic photons of frequency 540 x 1012 Hz and has a radiant intensity in that direction of 1/683 W/sr.
 
Carnot's theorem (S. Carnot)
 
The theorem which states that no engine operating between two temperatures can be more efficient than a reversible engine.
 
Casimir effect (Casimir)
 
A quantum mechanical effect, where two very large plates placed close to each other will experience an attractive force, in the absence of other forces. The cause is virtual particle-antiparticle pair creation in the vicinity of the plates. Also, the speed of light will be increased in the region between the two plates, in the direction perpendicular to them.
 
causality principle
 
The principle that cause must always preceed effect. More formally, if an event A ("the cause") somehow influences an event B ("the effect") which occurs later in time, then event B cannot in turn have an influence on event A. That is, event B must occur at a later time t than event A, and further, all frames must agree upon this ordering.

The principle is best illustrated with an example. Say that event A constitutes a murderer making the decision to kill his victim, and that event B is the murderer actually committing the act. The principle of causality puts forth that the act of murder cannot have an influence on the murderer's decision to commit it. If the murderer were to somehow see himself committing the act and change his mind, then a murder would have been committed in the future without a prior cause (he changed his mind). This represents a causality violation. Both time travel and faster-than-light travel both imply violations of causality, which is why most physicists think they are impossible, or at least impossible in the general sense.

 
centrifugal pseudoforce
 
A pseudoforce that occurs when one is moving in uniform circular motion. One feels a "force" directed outward from the center of motion.
 
Chandrasekhar limit (S. Chandrasekhar; 1930)
 
A limit which mandates that no white dwarf (a collapsed, degenerate star) can be more massive than about 1.4 masses solar. Any degenerate mass more massive must inevitably collapse into a neutron star.
 
Charles' law (J.A.C. Charles; c. 1787)
 
The volume of an ideal gas at constant pressure is proportional to the thermodynamic temperature of that gas.
 
Cherenkov [Cerenkov] radiation (P.A. Cherenkov)
 
Radiation emitted by a massive particle which is moving faster than light in the medium through which it is travelling. No particle can travel faster than light in vacuum, but the speed of light in other media, such as water, glass, etc., are considerably lower. Cherenkov radiation is the electromagnetic analogue of the sonic boom, though Cherenkov radiation is a shockwave set up in the electromagnetic field.
 
chronology protection conjecture (S.W. Hawking)
 
The concept that the formation of any closed timelike curve will automatically be destroyed by quantum fluctuations as soon as it is formed. In other words, quantum fluctuations prevent time machines from being created.
 
Coanda effect
 
The effect that indicates that a fluid tends to flow along a surface, rather than flow through free space.
 
complementarity principle (N. Bohr)
 
The principle that a given system cannot exhibit both wave-like behavior and particle-like behavior at the same time. That is, certain experiments will reveal the wave-like nature of a system, and certain experiments will reveal the particle-like nature of a system, but no experiment will reveal both simultaneously.
 
Compton effect (A.H. Compton; 1923)
 
An effect that demonstrates that photons (the quantum of electromagnetic radiation) have momentum. A photon fired at a stationary particle, such as an electron, will impart momentum to the electron and, since its energy has been decreased, will experience a corresponding decrease in frequency.
 
conservation laws
 
A law which states that, in a closed system, the total quantity of something will not increase or decrease, but remain exactly the same; that is, its rate of change is zero. For physical quantities, it states that something can neither be created nor destroyed. Mathematically, if a scalar X is the quantity considered, then
dX/dt = 0,
or, equivalently,
X = constant.
For a vector field F, the conservation law is written as
div F = 0;
that is, the vector field F is divergence-free everywhere (i.e., has no sources or sinks).

Some specific examples of conservation laws are:

conservation of mass-energy
The total mass-energy of a closed system remains constant.
conservation of electric charge
The total electric charge of a closed system remains constant.
conservation of linear momentum
The total linear momentum of a closed system remains constant.
conservation of angular momentum
The total angular momentum of a closed system remains constant.

There are several other laws that deal with particle physics, such as conservation of baryon number, of strangeness, etc., which are conserved in some fundamental interactions (such as the electromagnetic interaction) but not others (such as the weak interaction).

 
constancy principle (A. Einstein)
 
One of the postulates of A. Einstein's special theory of relativity, which puts forth that the speed of light in vacuum is measured as the same speed to all observers, regardless of their relative motion. That is, if I'm travelling at 0.9 c away from you, and fire a beam of light in that direction, both you and I will independently measure the speed of that beam as c.

One of the results of this postulate (one of the predictions of special relativity) is that no massive particle can be accelerated to (or beyond) lightspeed, and thus the speed of light also represents the ultimate cosmic speed limit. Only massless particles (collectively called luxons, including photons, gravitons, and possibly neutrinos, should they prove to indeed be massless) travel at lightspeed, and all other particles must travel at slower speeds.

 
equation of continuity
 
An equation which states that a fluid flowing through a pipe flows at a rate which is inversely proportional to the cross-sectional area of the pipe. That is, if the pipe constricts, the fluid flows faster; if it widens, the fluid flows slower. It is in essence a restatement of the consevation of mass during constant flow.
 
Copernican principle (N. Copernicus)
 
The idea, suggested by Copernicus, that the Sun, not the Earth, is at the center of the Universe. We now know that neither idea is correct (the Sun is not even located at the center of our Galaxy, much less the Universe), but it set into effect a long chain of demotions of Earth's and our place in the Universe, to where it is now: On an unimpressive planet orbiting a mediocre star in a corner of a typical galaxy, lost in the Universe.
 
Coriolis pseudoforce (G. de Coriolis; 1835)
 
A pseudoforce which arises because of motion relative to a frame which is itself rotating relative to second, inertial frame. The magnitude of the Coriolis "force" is dependent on the speed of the object relative to the noninertial frame, and the direction of the "force" is orthogonal to the object's velocity.
 
correspondence limit (N. Bohr)
 
The limit at which a more general theory reduces to a more specialized theory when the conditions that the specialized theory requires are taken away.
 
correspondence principle (N. Bohr)
 
The principle that when a new, more general theory is put forth, it must reduce to the more specialized (and usually simpler) theory under normal circumstances. There are correspondence principles for general relativity to special relativity and special relativity to Newtonian mechanics, but the most widely known correspondence principle (and generally what is meant when one says "correspondence principle") is that of quantum mechanics to classical mechanics.

 

cosmological constant; Lambda
 
The constant introduced to the Einstein field equation, intended to admit static cosmological solutions. At the time the current philosophical view was the steady-state model of the Universe, where the Universe has been around for infinite time. Early analysis of the field equation indicated that general relativity allowed dynamic cosmological models only (ones that are either contracting or expanding), but no static models. Einstein introduced the most natural abberation to the field equation that he could think of: the addition of a term proportional to the spacetime metric tensor, g, with the constant of proportionality being the cosmological constant:
G + Lambda g = 8 pi T.

Hubble's later discovery of the expansion of the Universe indicated that the introduction of the cosmological constant was unnecessary; had Einstein believed what his field equation was telling him, he could have claimed the expansion of the Universe as perhaps the greatest and most convincing prediction of general relativity; he called this the "greatest blunder of my life."

cosmological redshift
 
An effect where light emitted from a distant source appears redshifted because of the expansion of spacetime itself.

 

Coulomb's law (C. de Coulomb)
 
The primary law for electrostatics, analogous to Newton's law of universal gravitation. It states that the force between two point charges is proportional to the algebraic product of their respective charges as well as proportional to the inverse square of the distance between them; mathematically,
F = 1/(4 pi epsilon0) (q Q/r2) e,
where q and Q are the strengths of the two charges, r is the distance between the two, and e is a unit vector directed from the test charge to the second.
 
Curie constant; C (P. Curie)
 
A characteristic constant, dependent on the material in question, which indicates the proportionality between its susceptibility and its thermodynamic temperature.
 
Curie's law (P. Curie)
 
The susceptibility, khi, of an isotropic paramagnetic substance is related to its thermodynamic temperature T by the equation
khi = C/T

 

Curie-Weiss law (P. Curie, P.-E. Weiss)
 
A more general form of Curie's law, which states that the susceptibility, khi, of an paramagnetic substance is related to its thermodynamic temperature T by the equation
khi = C/T - W

 



Discussion Center

Discuss/
Query

Papers/
Syllabus

Feedback/
Suggestion

Yahoo
Groups

Sirfdosti
Groups

Contact
Us

MEMBERS LOGIN
  
Email ID:
Password:

  Forgot Password?
 New User? Register!

INTERVIEW EBOOK
Get 9,000+ Interview Questions & Answers in an eBook. Interview Question & Answer Guide
  • 9,000+ Interview Questions
  • All Questions Answered
  • 5 FREE Bonuses
  • Free Upgrades
GATE RESOURCES
 
  • Gate Books
  • Training Institutes
  • Gate FAQs
  • GATE BOOKS
     
  • Mechanical Engineeering Books
  • Robotics Automations Engineering Books
  • Civil Engineering Books
  • Chemical Engineering Books
  • Environmental Engineering Books
  • Electrical Engineering Books
  • Electronics Engineering Books
  • Information Technology Books
  • Software Engineering Books
  • GATE Preparation Books
  • Exciting Offers



    GATE Exam, Gate 2009, Gate Papers, Gate Preparation & Related Pages


    GATE Overview | GATE Eligibility | Structure Of GATE | GATE Training Institutes | Colleges Providing M.Tech/M.E. | GATE Score | GATE Results | PG with Scholarships | Article On GATE | GATE Forum | GATE 2009 Exclusive | GATE 2009 Syllabus | GATE Organizing Institute | Important Dates for GATE Exam | How to Apply for GATE | Discipline / Branch Codes | GATE Syllabus for Aerospace Engineering | GATE Syllabus for Agricultural Engineering | GATE Syllabus for Architecture and Planning | GATE Syllabus for Chemical Engineering | GATE Syllabus for Chemistry | GATE Syllabus for Civil Engineering | GATE Syllabus for Computer Science / IT | GATE Syllabus for Electronics and Communication Engineering | GATE Syllabus for Engineering Sciences | GATE Syllabus for Geology and Geophysics | GATE Syllabus for Instrumentation Engineering | GATE Syllabus for Life Sciences | GATE Syllabus for Mathematics | GATE Syllabus for Mechanical Engineering | GATE Syllabus for Metallurgical Engineering | GATE Syllabus for Mining Engineering | GATE Syllabus for Physics | GATE Syllabus for Production and Industrial Engineering | GATE Syllabus for Pharmaceutical Sciences | GATE Syllabus for Textile Engineering and Fibre Science | GATE Preparation | GATE Pattern | GATE Tips & Tricks | GATE Compare Evaluation | GATE Sample Papers | GATE Downloads | Experts View on GATE | CEED 2009 | CEED 2009 Exam | Eligibility for CEED Exam | Application forms of CEED Exam | Important Dates of CEED Exam | Contact Address for CEED Exam | CEED Examination Centres | CEED Sample Papers | Discuss GATE | GATE Forum of OneStopGATE.com | GATE Exam Cities | Contact Details for GATE | Bank Details for GATE | GATE Miscellaneous Info | GATE FAQs | Advertisement on GATE | Contact Us on OneStopGATE |
    Copyright © 2024. One Stop Gate.com. All rights reserved Testimonials |Link To Us |Sitemap |Privacy Policy | Terms and Conditions|About Us
    Our Portals : Academic Tutorials | Best eBooksworld | Beyond Stats | City Details | Interview Questions | India Job Forum | Excellent Mobiles | Free Bangalore | Give Me The Code | Gog Logo | Free Classifieds | Jobs Assist | Interview Questions | One Stop FAQs | One Stop GATE | One Stop GRE | One Stop IAS | One Stop MBA | One Stop SAP | One Stop Testing | Web Hosting | Quick Site Kit | Sirf Dosti | Source Codes World | Tasty Food | Tech Archive | Software Testing Interview Questions | Free Online Exams | The Galz | Top Masala | Vyom | Vyom eBooks | Vyom International | Vyom Links | Vyoms | Vyom World
    C Interview Questions | C++ Interview Questions | Send Free SMS | Placement Papers | SMS Jokes | Cool Forwards | Romantic Shayari