OneStopGate.Com
OnestopGate   OnestopGate
   Tuesday, April 16, 2024 Login  
OnestopGate
Home | Overview | Syllabus | Tutorials | FAQs | Downloads | Recommended Websites | Advertise | Payments | Contact Us | Forum
OneStopGate

GATE Resources
Gate Articles
Gate Books
Gate Colleges 
Gate Downloads 
Gate Faqs
Gate Jobs
Gate News 
Gate Sample Papers
Training Institutes

GATE Overview
Overview
GATE Eligibility
Structure Of GATE
GATE Coaching Centers
Colleges Providing M.Tech/M.E.
GATE Score
GATE Results
PG with Scholarships
Article On GATE
Admission Process For M.Tech/ MCP-PhD
GATE Topper 2012-13
GATE Forum




GATE 2025 Exclusive
Organizing Institute
Important Dates
How to Apply
Discipline Codes
GATE 2025 Exam Structure

GATE 2025 Syllabus
Aerospace Engg..
Agricultural Engg..
Architecture and Planning
Chemical Engg..
Chemistry
Civil Engg..
Computer Science / IT
Electronics & Communication Engg..
Electrical Engg..
Engineering Sciences
Geology and Geophysics
Instrumentation Engineering
Life Sciences
Mathematics
Mechanical Engg..
Metallurgical Engg..
Mining Engg..
Physics
Production & Industrial Engg..
Pharmaceutical Sciences
Textile Engineering and Fibre Science

GATE Study Material
Aerospace Engg..
Agricultural Engg..
Chemical Engg..
Chemistry
Civil Engg..
Computer Science / IT
Electronics & Communication Engg..
Electrical Engg..
Engineering Sciences
Instrumentation Engg..
Life Sciences
Mathematics
Mechanical Engg..
Physics
Pharmaceutical Sciences
Textile Engineering  and Fibre Science

GATE Preparation
GATE Pattern
GATE Tips N Tricks
Compare Evaluation
Sample Papers 
Gate Downloads 
Experts View

CEED 2013
CEED Exams
Eligibility
Application Forms
Important Dates
Contact Address
Examination Centres
CEED Sample Papers

Discuss GATE
GATE Forum
Exam Cities
Contact Details
Bank Details

Miscellaneous
Advertisment
Contact Us


Home » GATE Study Material » Aerospace Engineering » Reliability engineering

Reliability engineering

Looking for GATE Preparation Material? Join & Get here now!

** Gate 2013 Question Papers.. ** CEED 2013 Results.. ** Gate 2013 Question Papers With Solutions.. ** GATE 2013 CUT-OFFs.. ** GATE 2013 Results.. **

<<Previous Next>>
Reliability engineering

Reliability program plan

Many tasks, methods, and tools can be used to achieve reliability. Every system requires a different level of reliability. A commercial airliner must operate under a wide range of conditions. The consequences of failure are grave, but there is a correspondingly higher budget. A pencil sharpener may be more reliable than an airliner, but has a much different set of operational conditions, insignificant consequences of failure, and a much lower budget.



A reliability program plan is used to document exactly what tasks, methods, tools, analyses, and tests are required for a particular system. For complex systems, the reliability program plan is a separate document. For simple systems, it may be combined with the systems engineering management plan. The reliability program plan is essential for a successful reliability program and is developed early during system development. It specifies not only what the reliability engineer does, but also the tasks performed by others. The reliability program plan is approved by top program management.

Reliability requirements

For any system, one of the first tasks of reliability engineering is to adequately specify the reliability requirements. Reliability requirements address the system itself, test and assessment requirements, and associated tasks and documentation. Reliability requirements are included in the appropriate system/subsystem requirements specifications, test plans, and contract statements.

System reliability parameters

Requirements are specified using reliability parameters. The most common reliability parameter is the mean-time-between-failure (MTBF), which can also be specified as the failure rate or the number of failures during a given period. These parameters are very useful for systems that are operated on a regular basis, such as most vehicles, machinery, and electronic equipment. Reliability increases as the MTBF increases. The MTBF is usually specified in hours, but can also be used with other units of measurement such as miles or cycles.

In other cases, reliability is specified as the probability of mission success. For example, reliability of a scheduled aircraft flight can be specified as a dimensionless probability or a percentage.

A special case of mission success is the single-shot device or system. These are devices or systems that remain relatively dormant and only operate once. Examples include automobile airbags, thermal batteries and missiles. Single-shot reliability is specified as a probability of success, or is subsumed into a related parameter. Single-shot missile reliability may be incorporated into a requirement for the probability of hit.

For such systems, the probability of failure on demand (PFD) is the reliability measure. This PFD is derived from failure rate and mission time for non-repairable systems. For repairable systems, it is obtained from failure rate and MTTR and test interval. This measure may not be unique for a given system as this measure depends on the kind of demand. In addition to system level requirements, reliability requirements may be specified for critical subsystems. In all cases, reliability parameters are specified with appropriate statistical confidence intervals.

Reliability modelling

Reliability modelling is the process of predicting or understanding the reliability of a component or system. Two separate fields of investigation are common: The physics of failure approach uses an understanding of the failure mechanisms involved, such as crack propagation or chemical corrosion; The parts stress modelling approach is an empirical method for prediction based on counting the number and type of components of the system, and the stress they undergo during operation.

For systems with a clearly defined failure time (which is sometimes not given for systems with a drifting parameter), the empirical distribution function of these failure times can be determined. This is done in general in an accelerated experiment with increased stress. These experiments can be divided into two main categories:

Early failure rate studies determine the distribution with a decreasing failure rate over the first part of the bathtub curve. Here in general only moderate stress is necessary. The stress is applied for a limited period of time in what is called a censored test. Therefore, only the part of the distribution with early failures can be determined.

In so-called zero defect experiments, only limited information about the failure distribution is acquired. Here the stress, stress time, or the sample size is so low that not a single failure occurs. Due to the insufficient sample size, only an upper limit of the early failure rate can be determined. At any rate, it looks good for the customer if there are no failures.

In a study of the intrinsic failure distribution, which is often a material property, higher stresses are necessary to get failure in a reasonable period of time. Several degrees of stress have to be applied to determine an acceleration model. The empirical failure distribution is often parametrised with a Weibull or a log-normal model.

It is a general praxis to model the early failure rate with an exponential distribution. This less complex model for the failure distribution has only one parameter: the constant failure rate. In such cases, the Chi-square distribution can be used to find the goodness of fit for the estimated failure rate. Compared to a model with a decreasing failure rate, this is quite pessimistic. Combined with a zero-defect experiment this becomes even more pessimistic. The effort is greatly reduced in this case: one does not have to determine a second model parameter (e.g. the shape parameter of a Weibull distribution, or its confidence interval (e.g by an MLE / Maximum likelihood approach) - and the sample size is much smaller.

Reliability test requirements

Because reliability is a probability, even highly reliable systems have some chance of failure. However, testing reliability requirements is problematic for several reasons. A single test is insufficient to generate enough statistical data. Multiple tests or long-duration tests are usually very expensive. Some tests are simply impractical. Reliability engineering is used to design a realistic and affordable test program that provides enough evidence that the system meets its requirement. Statistical confidence levels are used to address some of these concerns. A certain parameter is expressed along with a corresponding confidence level: for example, an MTBF of 1000 hours at 90% confidence level. From this specification, the reliability engineer can design a test with explicit criteria for the number of hours and number of failures until the requirement is met or failed.

The combination of reliability parameter value and confidence level greatly affects the development cost and the risk to both the customer and producer. Care is needed to select the best combination of requirements. Reliability testing may be performed at various levels, such as component, subsystem, and system. Also, many factors must be addressed during testing, such as extreme temperature and humidity, shock, vibration, and heat. Reliability engineering determines an effective test strategy so that all parts are exercised in relevant environments. For systems that must last many years, reliability engineering may be used to design an accelerated life test.

Requirements for reliability tasks

Reliability engineering must also address requirements for various reliability tasks and documentation during system development, test, production, and operation. These requirements are generally specified in the contract statement of work and depend on how much leeway the customer wishes to provide to the contractor. Reliability tasks include various analyses, planning, and failure reporting. Task selection depends on the criticality of the system as well as cost. A critical system may require a formal failure reporting and review process throughout development, whereas a non-critical system may rely on final test reports. The most common reliability program tasks are documented in reliability program standards, such as MIL-STD-785 and IEEE 1332.

<<Previous Next>>



Discussion Center

Discuss/
Query

Papers/
Syllabus

Feedback/
Suggestion

Yahoo
Groups

Sirfdosti
Groups

Contact
Us

MEMBERS LOGIN
  
Email ID:
Password:

  Forgot Password?
 New User? Register!

INTERVIEW EBOOK
Get 9,000+ Interview Questions & Answers in an eBook. Interview Question & Answer Guide
  • 9,000+ Interview Questions
  • All Questions Answered
  • 5 FREE Bonuses
  • Free Upgrades
GATE RESOURCES
 
  • Gate Books
  • Training Institutes
  • Gate FAQs
  • GATE BOOKS
     
  • Mechanical Engineeering Books
  • Robotics Automations Engineering Books
  • Civil Engineering Books
  • Chemical Engineering Books
  • Environmental Engineering Books
  • Electrical Engineering Books
  • Electronics Engineering Books
  • Information Technology Books
  • Software Engineering Books
  • GATE Preparation Books
  • Exciting Offers



    GATE Exam, Gate 2009, Gate Papers, Gate Preparation & Related Pages


    GATE Overview | GATE Eligibility | Structure Of GATE | GATE Training Institutes | Colleges Providing M.Tech/M.E. | GATE Score | GATE Results | PG with Scholarships | Article On GATE | GATE Forum | GATE 2009 Exclusive | GATE 2009 Syllabus | GATE Organizing Institute | Important Dates for GATE Exam | How to Apply for GATE | Discipline / Branch Codes | GATE Syllabus for Aerospace Engineering | GATE Syllabus for Agricultural Engineering | GATE Syllabus for Architecture and Planning | GATE Syllabus for Chemical Engineering | GATE Syllabus for Chemistry | GATE Syllabus for Civil Engineering | GATE Syllabus for Computer Science / IT | GATE Syllabus for Electronics and Communication Engineering | GATE Syllabus for Engineering Sciences | GATE Syllabus for Geology and Geophysics | GATE Syllabus for Instrumentation Engineering | GATE Syllabus for Life Sciences | GATE Syllabus for Mathematics | GATE Syllabus for Mechanical Engineering | GATE Syllabus for Metallurgical Engineering | GATE Syllabus for Mining Engineering | GATE Syllabus for Physics | GATE Syllabus for Production and Industrial Engineering | GATE Syllabus for Pharmaceutical Sciences | GATE Syllabus for Textile Engineering and Fibre Science | GATE Preparation | GATE Pattern | GATE Tips & Tricks | GATE Compare Evaluation | GATE Sample Papers | GATE Downloads | Experts View on GATE | CEED 2009 | CEED 2009 Exam | Eligibility for CEED Exam | Application forms of CEED Exam | Important Dates of CEED Exam | Contact Address for CEED Exam | CEED Examination Centres | CEED Sample Papers | Discuss GATE | GATE Forum of OneStopGATE.com | GATE Exam Cities | Contact Details for GATE | Bank Details for GATE | GATE Miscellaneous Info | GATE FAQs | Advertisement on GATE | Contact Us on OneStopGATE |
    Copyright © 2024. One Stop Gate.com. All rights reserved Testimonials |Link To Us |Sitemap |Privacy Policy | Terms and Conditions|About Us
    Our Portals : Academic Tutorials | Best eBooksworld | Beyond Stats | City Details | Interview Questions | India Job Forum | Excellent Mobiles | Free Bangalore | Give Me The Code | Gog Logo | Free Classifieds | Jobs Assist | Interview Questions | One Stop FAQs | One Stop GATE | One Stop GRE | One Stop IAS | One Stop MBA | One Stop SAP | One Stop Testing | Web Hosting | Quick Site Kit | Sirf Dosti | Source Codes World | Tasty Food | Tech Archive | Software Testing Interview Questions | Free Online Exams | The Galz | Top Masala | Vyom | Vyom eBooks | Vyom International | Vyom Links | Vyoms | Vyom World
    C Interview Questions | C++ Interview Questions | Send Free SMS | Placement Papers | SMS Jokes | Cool Forwards | Romantic Shayari